We extend the classical empirical interpolation method [M. Barrault, Y. Maday, N.C.Nguyen and A.T. Patera, An empirical interpolation method: application to efficientreduced-basis discretization of partial differential equations. Compt. Rend. Math.Anal. Num. 339 (2004) 667–672] to a weighted empiricalinterpolation method in order to approximate nonlinear parametric functions with weightedparameters, e.g. random variables obeying various probabilitydistributions. A priori convergence analysis is provided for the proposedmethod and the error bound by Kolmogorov N-width is improved from the recent work [Y.Maday, N.C. Nguyen, A.T. Patera and G.S.H. Pau, A general, multipurpose interpolationprocedure: the magic points. Commun. Pure Appl. Anal. 8(2009) 383–404]. We apply our method to geometric Brownian motion, exponentialKarhunen–Loève expansion and reduced basis approximation of non-affine stochastic ellipticequations. We demonstrate its improved accuracy and efficiency over the empiricalinterpolation method, as well as sparse grid stochastic collocation method.