When passing from two to more dimensions, the study of non-isotropic scattering transport processes, and chain molecules, which are both covered by the same mathematical model, becomes affected by the non-commutativity of rotations. The techniques developed in [2], together with results on radially symmetric direction changes, are used in this paper to obtain a functional central limit theorem for those random processes, with a suitable normalization, the limit being a Brownian motion process which is completely identified.