This paper presents a singularity analysis for a 3-DOF parallel manipulator with R-P-S (Revolute-Prismatic-Spherical) joint structure. All three types of singularities are investigated with most attention paid for direct kinematics singularities (DKS). The loci of inverse kinematics and combined singularities are identified using a new approach. The equation of DKS is defined first from the condition of existence of an instantaneous motion. The geometrical method is used to find the loci of trajectories corresponding to DKS-s. As a result of these investigations, an optimization procedure was proposed of a robot design in order to have an enlarged singularity free part of the working space. The construction of a singularity free path is discussed without changing the robot trajectory by selecting the appropriate inverse kinematics task solution.