This paper presents a new approach for simplifying dynamic equations of motion of robot manipulators by using a nondimensionalization scheme. With this approach the dynamic analysis is done in a nondimensional space. That is, it is required to establish a dimensionless coordinate system in which the dynamic equations of motion of manipulators are formulated. The characteristic parameters of the manipulators are then defined by choosing proper physical quantities as basic units for nondimensionalization. Within the nondimensional space the Lagrange method is applied to the manipulator to obtain a set of general dimensionless equations of motion. This dimensionless dynamic formulation of manipulators leads to an easier way to simplify the dynamic formulation by neglecting insignificant terms using the order of magnitude comparison. The dimensionless dynamic model and its simplified version of PUMA 560 robot are implemented using the proposed approach. It is found that the simplified dynamic model greatly reduces the computation burden of the inverse dynamics. Simulation results also show that the simplified model is extremely accurate. This implies that the proposed nondimensional simplification emethod is reliable.