We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The primary aim of this study was to compare the sleep macroarchitecture of children and adolescents whose mothers have a history of depression with children and adolescents whose mothers do not.
Method
Polysomnography (PSG) and Holter electroencephalogram (EEG) were used to compare the sleep architecture of 35 children whose mothers had at least one previous depressive episode (19 boys, aged 4–18 years, “high-risk” group) and 25 controls (13 males, aged 4–18 years, “low-risk” group) whose mothers had never had a depressive episode. The total sleep time, wakefulness after sleep onset (WASO), sleep latency, sleep efficiency, number of awakenings per hour of sleep, percentages of time spent in each sleep stage, rapid eye movement (REM) latency and the depressive symptoms of participants were measured.
Results
In children (4–12 years old), the high-risk group exhibited significantly more depressive symptoms than controls (P = 0.02). However, PSG parameters were not significantly different between high-risk children and controls. In adolescents (13–18 years old), the high-risk subjects presented with significantly more depressive symptoms (P = 0.003), a significant increase in WASO (P = 0.019) and a significant decrease in sleep efficiency compared to controls (P = 0.009).
Conclusion
This study shows that children and adolescents born from mothers with a history of at least one depressive episode had significantly more depressive symptoms than controls. However, only high-risk adolescents presented with concurrent alterations of sleep macroarchitecture.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.