A new oscillation criterion is given for the delay differential equation ${x}'\,(t)\,+\,p(t)x\,(t\,-\,\text{ }\!\!\tau\!\!\text{ (t)})\,=\,0$, where $p,\,\text{ }\!\!\tau\!\!\text{ }\,\in \,\text{C}\,\text{( }\!\![\!\!\text{ 0,}\,\infty ),\,\text{ }\!\![\!\!\text{ 0,}\,\infty )\text{)}$ and the function $T$ defined by $T(t)\,=\,t-\,\text{ }\!\!\tau\!\!\text{ }\,\text{(t),}\,\text{t}\ge \,\text{0}$ is increasing and such that ${{\lim }_{t\to \infty }}\,T(t)\,=\,\infty $. This criterion concerns the case where $\lim \,{{\inf }_{t\to \infty }}\int _{T(t)}^{t}p(s)ds\le \frac{1}{e}$.