Published online by Cambridge University Press: 07 February 2014
The stochastic dynamics of chemical reactions can be accurately described by chemicalmaster equations. An approximated time-evolution equation of the Langevin type has beenproposed by Gillespie based on two explicit dynamical conditions. However, whennumerically solve these chemical Langevin equations, we often have a small stopping time–atime point of having an unphysical solution–in the case of low molecular numbers. Thispaper proposes an approach to simulate stochasticities in chemical reactions withdeterministic delay differential equations. We introduce a deterministic Brownian motiondescribed by delay differential equations, and replace the Gaussian noise in the chemicalLangevin equations by the solutions of these deterministic equations. This modificationcan largely increase the stopping time in simulations and regain the accuracy as in thechemical Langevin equations. The novel aspect of the present study is to apply thedeterministic Brownian motion to chemical reactions. It suggests a possible direction ofdeveloping a hybrid method of simulating dynamic behaviours of complex gene regulationnetworks.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.