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1. Introduction

This paper deals with the boundedness and the asymptotic decay of the oscillatory solu-
tions of second-order linear (non-autonomous or autonomous) delay differential equations
of unstable type. The oscillation theory of delay differential equations has developed very
rapidly in the last few decades. For this theory, we choose to refer to the books by Erbe,
Kong and Zhang [3], Gopalsamy [4] and Györi and Ladas [6]. For the general theory of
delay differential equations, the reader is referred to the books by Diekmann et al . [1],
Driver [2] and Hale and Verduyn Lunel [7].

First of all, let us consider the first-order linear autonomous delay differential equa-
tions:

x′(t) + px(t − τ) = 0 (1.1)

and
x′(t) = px(t − τ), (1.2)

where p and τ are positive constants.
In spite of the fact that the solutions of the above autonomous delay differential equa-

tions are defined for all t ∈ R, here we will confine our attention only to solutions on
[t0,∞), for t0 ∈ R, of (1.1) or (1.2). For any t0 ∈ R, by a solution on [t0,∞) of (1.1)
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(respectively, of (1.2)) we mean a continuous real-valued function x defined on the interval
[t0−τ, ∞), which is continuously differentiable on [t0,∞) and satisfies (1.1) (respectively,
(1.2)) for every t � t0.

For the delay differential equation (1.1), the following result is well known (see, for
example, [2,4,8,10]).

(I) If pτ < 1
2π, then all solutions of (1.1) tend to zero at ∞.

(II) If pτ = 1
2π, then all solutions of (1.1) are bounded and, moreover, (1.1) has a

bounded oscillatory solution that does not tend to zero at ∞.

(III) If pτ > 1
2π, then (1.1) has an unbounded oscillatory solution.

It is clear that every non-oscillatory solution of (1.1) is always bounded. Furthermore,
it is not difficult to show that all non-oscillatory solutions of (1.1) tend to zero at ∞.
So, we can easily verify that the above result may equivalently be formulated as follows.

(i) All solutions of (1.1) are bounded if and only if pτ � 1
2π.

(ii) All solutions of (1.1) tend to zero at ∞ if and only if pτ < 1
2π.

The result that the condition pτ < 1
2π is sufficient for all solutions of (1.1) to tend

to zero at ∞ has been extended, for the more general case of first-order linear non-
autonomous delay differential equations, by Ladas, Sficas and Stavroulakis [9].

Györi [5] studied the existence and the growth of oscillatory solutions for first-order
linear delay differential equations of unstable type. In particular, for the autonomous
delay differential equation (1.2), Györi [5, Theorem 4.2] proved the next result.

(I) If pτ < 3
2π, then all oscillatory solutions of (1.2) tend to zero at ∞.

(II) If pτ = 3
2π, then all oscillatory solutions of (1.2) are bounded and, moreover, (1.2)

has a bounded oscillatory solution that does not tend to zero at ∞.

(III) If pτ > 3
2π, then (1.2) has an unbounded oscillatory solution.

It is easy to check that this result can equivalently be formulated as follows.

(i) All oscillatory solutions of (1.2) are bounded if and only if pτ � 3
2π.

(ii) All oscillatory solutions of (1.2) tend to zero at ∞ if and only if pτ < 3
2π.

Note that the preceding results for the autonomous delay differential equations (1.1)
and (1.2) are obtained by the study of the roots of their characteristic equations.

Our work in this paper is motivated by the results for (1.1) and (1.2) mentioned
previously, and especially by the one due to Györi [5] for the first-order linear autonomous
delay differential equation of unstable type (1.2). Here, we consider second-order linear
(autonomous as well as non-autonomous) delay differential equations of unstable type
and we study the boundedness and the asymptotic decay of the oscillatory solutions.
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Consider the second-order linear delay differential equation

x′′(t) = p(t)x(t − τ), (1.3)

where p is a positive continuous real-valued function on the interval [0,∞), and τ is a
positive constant.

Let t0 � 0. By a solution on [t0,∞) of the delay differential equation (1.3) we mean
a continuous real-valued function x defined on the interval [t0 − τ, ∞), which is twice
continuously differentiable on [t0,∞) and satisfies (1.3) for all t � t0.

Consider also the second-order linear autonomous delay differential equation

x′′(t) = px(t − τ), (1.4)

where p and τ are positive constants.
It is well known that every solution of the autonomous delay differential equation (1.4)

is defined on the whole real line. But, in what follows, we will restrict ourselves to
considering only solutions on [t0,∞), for t0 ∈ R, of (1.4). If t0 is any real number, by
a solution on [t0,∞) of (1.4) we mean a continuous real-valued function x defined on
[t0 − τ, ∞), which is twice continuously differentiable on [t0,∞) and satisfies (1.4) for
every t � t0.

With the differential equation (1.4) we associate its characteristic equation

λ2 = pe−λτ . (1.5)

As usual, a continuous real-valued function defined on an interval [T, ∞) is said to be
oscillatory if it has arbitrarily large zeros, and otherwise it is said to be non-oscillatory.

For the delay differential equation (1.3) we will establish a sufficient condition for all
oscillatory solutions to be bounded together with their first-order derivatives as well
as a condition under which all oscillatory solutions tend to zero at ∞ together with
their first-order derivatives. Moreover, in the case of the autonomous delay differential
equation (1.4), we will prove that

√
pτ � π is a necessary and sufficient condition for

all oscillatory solutions to be bounded and that
√

pτ < π is a necessary and sufficient
condition in order that all oscillatory solutions tend to zero at ∞. Our results and their
proofs in the case of the autonomous delay differential equation (1.4) are motivated
by the analogous results and their proofs given by Györi [5] for the first-order linear
autonomous delay differential equation (1.2). The main results of the paper and some
related comments are presented in § 2. The proofs of the main results are given in § 3.

2. Statement of the main results and comments

The main results of this paper are Propositions 2.1 and 2.2, Theorems 2.3 and 2.4,
Proposition 2.5 and Theorem 2.6 below. Proposition 2.1 establishes that the bounded-
ness of an oscillatory solution of (1.3) is implied by the boundedness of its derivative
and that an oscillatory solution of (1.3) tends to zero at ∞ if its derivative tends to
zero at ∞. Proposition 2.2 gives a condition under which, for any oscillatory solution
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of (1.3), the boundedness of the solution implies the boundedness of its derivative, and
the convergence to zero at ∞ of the solution ensures the same for its derivative. Theo-
rem 2.3 provides a sufficient condition for all oscillatory solutions of (1.3) to be bounded
together with their derivatives of first order. Theorem 2.4 establishes a condition, which
is sufficient for all oscillatory solutions of (1.3) to tend to zero at ∞ together with their
first-order derivatives. Proposition 2.5 and Theorem 2.6 concern the autonomous case,
i.e. the case of the delay differential equation (1.4). Proposition 2.5 gives necessary and
sufficient conditions, via the roots of the characteristic equation (1.5) of (1.4), for all
oscillatory solutions of (1.4) to be bounded or for all oscillatory solutions of (1.4) to tend
to zero at ∞. Theorem 2.6 provides sufficient conditions, on the coefficient p and the
delay τ , in order that all oscillatory solutions of (1.4) tend to zero at ∞ or in order that
all oscillatory solutions of (1.4) are bounded and (1.4) has a bounded oscillatory solution
which does not tend to zero at ∞ or in order that (1.4) has an unbounded oscillatory
solution. Note that Theorem 2.6 establishes a necessary and sufficient condition (on the
coefficient p and the delay τ) for all oscillatory solutions of (1.4) to be bounded and also
a necessary and sufficient condition (on p and τ) for all oscillatory solutions of (1.4) to
tend to zero at ∞.

Proposition 2.1. For any oscillatory solution x of the delay differential equation
(1.3), the following statements hold.

(i) If x′ is bounded, then x is also bounded.

(ii) If limt→∞ x′(t) = 0, then limt→∞ x(t) = 0.

Proposition 2.2. Suppose that

lim sup
t→∞

∫ t

t−τ

p(s) ds < ∞. (2.1)

Then, for any oscillatory solution x of the delay differential equation (1.3), the following
statements hold.

(i) If x is bounded, then x′ is also bounded.

(ii) If limt→∞ x(t) = 0, then limt→∞ x′(t) = 0.

In the special case of the autonomous delay differential equation (1.4), condition (2.1)
holds by itself. So, for the autonomous case, Propositions 2.1 and 2.2 can be unified in
the following result.

For any oscillatory solution x of the autonomous delay differential equation (1.4), the
following statements hold.

(i) x is bounded if and only if x′ is bounded.

(ii) limt→∞x(t) = 0 if and only if limt→∞ x′(t) = 0.
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Theorem 2.3. Suppose that
∫ t

t−τ

(t − s)p(s) ds � 1 for all large t. (2.2)

Then all oscillatory solutions of the delay differential equation (1.3) are bounded together
with their first-order derivatives.

Theorem 2.4. Suppose that

lim sup
t→∞

∫ t

t−τ

(t − s)p(s) ds < 1. (2.3)

Then all oscillatory solutions of the delay differential equation (1.3) tend to zero at ∞
together with their first-order derivatives.

For the special case of the autonomous delay differential equation (1.4), Theorem 2.3
establishes that the condition

√
pτ �

√
2 is sufficient for all oscillatory solutions to be

bounded, and Theorem 2.4 guarantees that
√

pτ <
√

2 is a sufficient condition in order
that all oscillatory solutions tend to zero at ∞. These conditions are not sharp. Indeed, as
is established by Theorem 2.6 below, a necessary and sufficient condition for all oscillatory
solutions of (1.4) to be bounded is that

√
pτ � π and also a necessary and sufficient

condition for all oscillatory solutions of (1.4) to tend to zero at ∞ is
√

pτ < π.
Proposition 2.5 below is needed for the proof of Theorem 2.6. But, this proposition is

also interesting by itself.

Proposition 2.5.

(i) All oscillatory solutions of (1.4) are bounded if and only if for any root λ = µ + iν
of (1.5) we have µ � 0 whenever ν > 0.

(ii) All oscillatory solutions of (1.4) tend to zero at ∞ if and only if for any root
λ = µ + iν of (1.5) we have µ < 0 whenever ν > 0.

From parts (i) and (ii) of Proposition 2.5 we can easily obtain the following result.

All oscillatory solutions of (1.4) are bounded and (1.4) has a bounded oscillatory solution
which does not tend to zero at ∞ if and only if for any root λ = µ + iν of (1.5) we have
µ � 0 whenever ν > 0 and (1.5) has a root λ = iν with ν > 0.

Theorem 2.6.

(I) If
√

pτ < π, then all oscillatory solutions of (1.4) tend to zero at ∞.

(II) If
√

pτ = π, then all oscillatory solutions of (1.4) are bounded and, moreover, (1.4)
has a bounded oscillatory solution that does not tend to zero at ∞.

(III) If
√

pτ > π, then (1.4) has an unbounded oscillatory solution.

It is not difficult to see that Theorem 2.6 can equivalently be formulated as follows.
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(i) All oscillatory solutions of (1.4) are bounded if and only if
√

pτ � π.

(ii) All oscillatory solutions of (1.4) tend to zero at ∞ if and only if
√

pτ < π.

Before closing this section, let us introduce the conditions
∫ t

t−τ

(t − s)p(s) ds � 1
2π2 for all large t (2.4)

and

lim sup
t→∞

∫ t

t−τ

(t − s)p(s) ds < 1
2π2, (2.5)

which are weaker than (2.2) and (2.3), respectively. In the case of the autonomous
delay differential equation (1.4), conditions (2.4) and (2.5) take the forms

√
pτ � π and√

pτ < π, respectively. So, it is an interesting problem to examine if we can establish the
conclusions of Theorems 2.3 and 2.4 with the conditions (2.4) and (2.5) in place of (2.2)
and (2.3), respectively.

3. Proofs of the main results

Proof of Proposition 2.1. Let x be an oscillatory solution on an interval [t0,∞),
t0 � 0, of the delay differential equation (1.3). If the solution x is eventually identically
zero, then x is bounded and limt→∞ x(t) = 0. So, we may (and do) assume that x is
not eventually identically zero. Now, let us consider a sequence (tν)ν�1 of zeros of the
solution x with t0 + τ � t1 < t2 < · · · and limν→∞ tν = ∞, and such that x is not
identically zero on [tν , tν+1] for any ν ∈ {1, 2, . . . }. Clearly, the proof of statements (i)
and (ii) can be accomplished by showing that

max
tν�t�tν+1

|x(t)| � τ max
tν−τ�t�tν+1

|x′(t)| (ν = 1, 2, . . . ).

To prove this fact, let us consider an arbitrary ν ∈ {1, 2, . . . }. Let Tν ∈ (tν , tν+1) be such
that

|x(Tν)| = max
tν�t�tν+1

|x(t)|.

Obviously, x(Tν) �= 0. Furthermore, as the negative of a solution of (1.3) is also a solution
of the same equation, we can restrict ourselves only to the case where x(Tν) > 0. Since x

has a maximum at Tν , we must have x′(Tν) = 0 and x′′(Tν) � 0. By the last inequality,
from (1.3) it follows that x(Tν − τ) � 0. This inequality together with x(Tν) > 0 imply
the existence of a point T ∗

ν ∈ [Tν − τ, Tν) such that x(T ∗
ν ) = 0. Hence, we obtain

x(Tν) =
∫ Tν

T ∗
ν

x′(s) ds � (Tν − T ∗
ν ) max

T ∗
ν �t�Tν

|x′(t)|

� τ max
Tν−τ�t�Tν

|x′(t)| � τ max
tν−τ�t�tν+1

|x′(t)|,

and so the proof is complete. �
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Proof of Proposition 2.2. By hypothesis (2.1), we have∫ t

t−τ

p(s) ds � K for all t � τ,

where K is a positive constant.
Let us consider an oscillatory solution x on an interval [t0,∞), t0 � 0, of the differ-

ential equation (1.3). Obviously, x′ is also oscillatory. In the case where x′ is eventually
identically zero, x′ is bounded and limt→∞ x′(t) = 0. Thus, we can suppose that x′ is not
eventually identically zero. Next, we choose a sequence (tν)ν=1,2,... of zeros of x′ with
t0 + τ � t1 < t2 < · · · and limν→∞ tν = ∞, such that x′ is not identically zero on any
interval [tν , tν+1] (ν = 1, 2, . . . ). In order to establish statements (i) and (ii), it suffices
to show that

max
tν�t�tν+1

|x′(t)| � K max
tν−2τ�t�tν+1−τ

|x(t)| (ν = 1, 2, . . . ).

To this end, let ν be an arbitrary positive integer. Consider a point Tν ∈ (tν , tν+1) such
that

|x′(Tν)| = max
tν�t�tν+1

|x′(t)|.

It is obvious that x′(Tν) �= 0. Since −x is also a solution of (1.3), we may (and do)
assume that x′(Tν) > 0. As x′ has a maximum at Tν , we have x′′(Tν) = 0 and, moreover,
there exists a (sufficiently small) ε > 0 such that x′′(t) � 0 for t ∈ (Tν − ε, Tν) and
x′′(t) � 0 for t ∈ (Tν , Tν + ε). Thus, from (1.3) it follows immediately that x(Tν −τ) = 0.
We now claim that there exists a point T ∗

ν ∈ [Tν − τ, Tν) with x′(T ∗
ν ) = 0. Otherwise,

as x′(Tν) > 0, the function x′ is necessarily positive on the whole interval [Tν − τ, Tν),
which ensures that x is strictly increasing on [Tν − τ, Tν). Thus, in view of the fact that
x(Tν −τ) = 0, we can conclude that x(t) > 0 for t ∈ (Tν − τ, Tν). By this inequality, from
(1.3) we can arrive at the contradiction x′′(t) > 0 for t ∈ (Tν , Tν + τ), which establishes
our claim. Finally, we obtain

x′(Tν) =
∫ Tν

T ∗
ν

x′′(s) ds =
∫ Tν

T ∗
ν

p(s)x(s − τ) ds

�
[∫ Tν

T ∗
ν

p(s) ds

]
max

T ∗
ν �t�Tν

|x(t − τ)|

�
[∫ Tν

Tν−τ

p(s) ds

]
max

Tν−τ�t�Tν

|x(t − τ)|

� K max
tν−τ�t�tν+1

|x(t − τ)| = K max
tν−2τ�t�tν+1−τ

|x(t)|,

which completes the proof. �

Proof of Theorem 2.3. First of all, by taking into account condition (2.2), we con-
sider a T0 � τ such that ∫ t

t−τ

(t − s)p(s) ds � 1 for all t � T0.
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Next, we observe that, by Proposition 2.1, it suffices to show that all oscillatory solutions
of the delay differential equation (1.3) have bounded first-order derivatives.

Assume, for the sake of contradiction, that the differential equation (1.3) admits an
oscillatory solution x on an interval [t0,∞), t0 � 0, such that x′ is unbounded. As the
negative of a solution of (1.3) is also a solution of the same equation, we can suppose that
x′ is unbounded from above. It is clear that x′ is also oscillatory. Now, it is not difficult
to conclude that there exists a sufficiently large point T > max{t0 + 2τ, T0} such that

x′(T ) = max
t0�t�T

|x′(t)|,

|x′(t)| < x′(T ) for every t ∈ [t0, T )

and, for some (sufficiently small) ε > 0,

x′′(t) � 0 for t ∈ (T, T + ε).

The fact that x′ has a maximum at T implies that x′′(T ) = 0 and so from (1.3) it follows
immediately that

x(T − τ) = 0.

Furthermore, we claim that

x′(T ∗) = 0

for some T ∗ ∈ [T −τ, T ). Otherwise, since x′(T ) > 0, the function x′ is always positive on
[T−τ, T ) and hence x is strictly increasing on the interval [T−τ, T ). Thus, as x(T−τ) = 0,
we must have x(t) > 0 for t ∈ (T − τ, T ). So, (1.3) gives x′′(t) > 0 for t ∈ (T, T + τ),
which contradicts the fact that x′′(t) � 0 for t ∈ (T, T + ε). This contradiction proves
our claim. Next, we derive

0 < x′(T ) =
∫ T

T ∗
x′′(s) ds =

∫ T

T ∗
p(s)x(s − τ) ds

=
∫ T

T ∗
p(s)

[∫ s−τ

T−τ

x′(r) dr

]
ds �

∫ T

T ∗
p(s)

[∫ T−τ

s−τ

|x′(r)| dr

]
ds

<

{∫ T

T ∗
p(s)

[∫ T−τ

s−τ

dr

]
ds

}
x′(T ) =

[∫ T

T ∗
(T − s)p(s) ds

]
x′(T )

�
[∫ T

T−τ

(T − s)p(s) ds

]
x′(T ) � x′(T ).

We have thus arrived at the contradiction x′(T ) < x′(T ), which completes the proof. �

Proof of Theorem 2.4. By condition (2.3), we can consider a positive number γ

such that

lim sup
t→∞

∫ t

t−τ

(t − s)p(s) ds < γ < 1.
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Then there exists a point T0 � τ such that
∫ t

t−τ

(t − s)p(s) ds � γ for all t � T0.

Furthermore, in view of Proposition 2.1, it is enough to establish that limt→∞ x′(t) = 0
for all oscillatory solutions x of the delay differential equation (1.3).

Let x be an oscillatory solution on an interval [t0,∞), t0 � 0, of the differential
equation (1.3). If x′ is eventually identically zero, then limt→∞ x′(t) = 0. So, we may (and
do) suppose that x′ is not eventually identically zero. Obviously, x′ is also oscillatory.
Hence, we can consider a sequence (tν)ν�1 of zeros of x′ with max{t0 + 2τ, T0} � t1 <

t2 < · · · and limν→∞ tν = ∞, and such that tν+1 − tν � 2τ (ν = 1, 2, . . . ) and x′ is not
identically zero on any interval [tν , tν+1] (ν = 1, 2, . . . ). Set

Mν = max
tν�t�tν+1

|x′(t)| (ν = 1, 2, . . . ).

Clearly, Mν > 0 (ν = 1, 2, . . . ). The proof will be accomplished by showing that

lim
ν→∞

Mν = 0.

To this end, it suffices to establish that

Mν � γMν−1 (ν = 2, 3, . . . ).

Indeed, in this case, we can obtain

Mν � γν−1M1 (ν = 1, 2, . . . ),

which implies that limν→∞ Mν = 0, since limν→∞ γν−1 = 0.
Now, let us consider an arbitrary ν ∈ {2, 3, . . . }. For this fixed ν, we will show that

Mν � γMν−1. For this purpose, let Tν ∈ (tν , tν+1) be such that

|x′(Tν)| = Mν ≡ max
tν�t�tν+1

|x′(t)|.

It is obvious that x′(Tν) �= 0. Furthermore, as −x is also a solution of (1.3), we can
confine our discussion only to the case where x′(Tν) > 0. Since x′ has a maximum at Tν ,
we have x′′(Tν) = 0 and, moreover, there exists a (sufficiently small) ε > 0 such that
x′′(t) � 0 for t ∈ (Tν − ε, Tν) and x′′(t) � 0 for t ∈ (Tν , Tν + ε). Thus, (1.3) gives

x(Tν − τ) = 0.

Assume that x′(t) �= 0 for t ∈ [Tν − τ, Tν). Then, as x′(Tν) > 0, the function x′ is always
positive on [Tν − τ, Tν), which guarantees that x is strictly increasing on [Tν − τ, Tν). So,
since x(Tν − τ) = 0, we have x(t) > 0 for t ∈ (Tν − τ, Tν) and hence from (1.3) we can
arrive at the contradiction x′′(t) > 0 for t ∈ (Tν , Tν + τ). This contradiction shows that
there exists a point T ∗

ν ∈ [Tν − τ, Tν) such that

x′(T ∗
ν ) = 0.
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We now obtain

Mν = x′(Tν) =
∫ Tν

T ∗
ν

x′′(s) ds =
∫ Tν

T ∗
ν

p(s)x(s − τ) ds

=
∫ Tν

T ∗
ν

p(s)
[∫ s−τ

Tν−τ

x′(r) dr

]
ds

�
∫ Tν

T ∗
ν

p(s)
[∫ Tν−τ

s−τ

|x′(r)| dr

]
ds

�
{∫ Tν

T ∗
ν

p(s)
[∫ Tν−τ

s−τ

dr

]
ds

}
max

T ∗
ν −τ�t�Tν−τ

|x′(t)|

=
[∫ Tν

T ∗
ν

(Tν − s)p(s) ds

]
max

T ∗
ν −τ�t�Tν−τ

|x′(t)|

�
[∫ Tν

Tν−τ

(Tν − s)p(s) ds

]
max

Tν−2τ�t�Tν−τ
|x′(t)|

� γ max
Tν−2τ�t�Tν−τ

|x′(t)|

� γ max
tν−2τ�t�tν+1−τ

|x′(t)|

� γ max
tν−2τ�t�tν+1

|x′(t)|

� γ max
tν−1�t�tν+1

|x′(t)|

= γ max
{

max
tν−1�t�tν

|x′(t)|, max
tν�t�tν+1

|x′(t)|
}

and, consequently,
Mν � γ max{Mν−1, Mν}.

Since γ < 1, we have Mν < max{Mν−1, Mν} and hence max{Mν−1, Mν} is always equal
to Mν−1. So, we have proved that Mν � γMν−1 and therefore our proof is complete. �

Proof of Proposition 2.5. Let λ = µ + iν with ν > 0 be a root of (1.5). Then the
function x defined by

x(t) = eµt cos νt, t � −τ,

is an oscillatory solution on [0,∞) of (1.4). Clearly, x is unbounded if µ > 0, and x does
not tend to zero as t → ∞ if µ � 0. Thus, if there exists a root λ = µ + iν of (1.5) with
µ > 0 and ν > 0, then (1.4) has an unbounded oscillatory solution, which proves the
‘only if’ part of (i). Moreover, the existence of a root λ = µ + iν of (1.5) with µ � 0 and
ν > 0 guarantees the existence of an oscillatory solution of (1.4) not tending to zero at
∞, which establishes the ‘only if’ part of (ii).

Now we proceed to the proof of the ‘if’ parts of (i) and (ii).
First of all, we notice that, for any real number γ, (1.5) has at most finitely many roots

λ with Re λ > γ (see, for example, [1, Chapter I, Theorem 4.4]). Our technique is based
on the use of the following well-known asymptotic result (see, for example, [1, Chapter I,
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Theorem 5.4]). Let x be a solution of (1.4). For any real number γ such that (1.5) has
no roots on the line Reλ = γ, we have the asymptotic expansion

x(t) =
�∑

j=1

Pj(t)eλjt + o(eγt) for t → ∞,

where λ1, . . . , λ� are the finitely many roots of (1.5) with real part exceeding γ and where,
for any j ∈ {1, . . . , �}, Pj(t) is a (complex-valued) polynomial in t of degree less than or
equal to mj − 1 with mj the multiplicity of λj as a root of (1.5).

Next, we show that in the interval [0,∞) there exists exactly one root of (1.5). In
addition, this root is positive and simple, and will be denoted by λ0. To this end, we set
F (λ) = λ2 − pe−λτ for λ � 0 and we observe that F ′(λ) = 2λ + pτe−λτ > 0 for λ � 0.
So, F is strictly increasing on [0,∞). Moreover, we have F (0) = −p < 0 and F (∞) = ∞.
Thus, λ = 0 is not a root of (1.5), and (1.5) has exactly one positive root λ0. The root
λ0 of (1.5) is simple, since F ′(λ0) > 0.

Furthermore, we claim that, if (1.5) admits purely imaginary roots, then (1.5) has
exactly two purely imaginary roots, the following ones i

√
p and −i

√
p, which are simple

roots of (1.5). To prove this claim, let us consider a real number ν with ν �= 0. Then iν
is a root of (1.5) if and only if

(iν)2 = pe−iντ , i.e. − ν2 = p(cos ντ − i sin ντ),

or, equivalently,
−ν2 = p cos ντ and sin ντ = 0.

The last equations hold if and only if

ν2 = p and cos ντ = −1,

namely if and only if

ν = ±√
p and cos

√
pτ = −1.

In addition, by setting F (λ) = λ2 − pe−λτ for complex λ, we have

F ′(±i
√

p) = ±2i
√

p + pτe∓i
√

pτ

= ±2i
√

p + pτ(cos
√

pτ ∓ i sin
√

pτ)

= −pτ ± 2i
√

p

�= 0,

which completes the proof of our claim.
Now, it is clear that the proof of the ‘if’ parts of (i) and (ii) can be accomplished by

showing that all oscillatory solutions of (1.4) tend to zero at ∞ (and so all oscillatory
solutions of (1.4) are bounded) if

for any root λ = µ + iν of (1.5) we have µ < 0 whenever ν > 0, (3.1)
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and by showing that all oscillatory solutions of (1.4) are bounded if

for any root λ = µ + iν of (1.5) we have µ � 0 whenever ν > 0,

and (1.5) has at least one root of the form iν with ν > 0. (3.2)

Consider first the case where (3.1) is true. If λ = µ + iν with ν �= 0 is a root of (1.5),
then λ̄ = µ − iν is also a root of (1.5). So, for any root λ = µ + iν with ν �= 0 of (1.5) we
have µ < 0. Furthermore, we conclude that Reλ < 0 for all roots λ of (1.5) with λ �= λ0.
Note that (1.5) has finitely many roots λ with Re λ > −1. So, we can choose a negative
real number γ such that Re λ < γ for all roots λ of (1.5) with λ �= λ0. For this number
γ, (1.5) has no roots λ with Re λ = γ. Moreover, λ0 is the unique root of (1.5) with
real part exceeding γ and this root is simple. Let x be an arbitrary oscillatory solution
of (1.4). Then we have the asymptotic expansion

x(t) = P0eλ0t + o(eγt) for t → ∞,

where P0 is a constant. If P0 �= 0, then, since λ0 > 0 and γ < 0, we immediately obtain
limt→∞ x(t) = ±∞, which contradicts the oscillatory character of x. So, we must have
P0 = 0 and, consequently,

x(t) = o(eγt) for t → ∞.

As γ < 0, we conclude that limt→∞ x(t) = 0.
Next, assume that (3.2) is true. Then for any root λ = µ + iν with ν �= 0 of (1.5) we

have µ � 0. Furthermore, it follows that Reλ < 0 for all roots λ of (1.5) with λ �= λ0

and λ �= ±i
√

p. Since (1.5) has finitely many roots λ with Re λ > −1, we can consider a
real number γ < 0 such that Re λ < γ for any root λ of (1.5) with λ �= λ0 and λ �= ±i

√
p.

Note that λ0 and ±i
√

p are the only roots of (1.5) with real part exceeding γ and that
these roots are simple ones. Consider an arbitrary oscillatory solution x of (1.4). Then

x(t) = P0eλ0t + P1ei
√

pt + P2e−i
√

pt + o(eγt) for t → ∞,

where P0, P1 and P2 are constants. We must have P0 = 0. Otherwise, as γ < 0 and
λ0 > 0, we obtain limt→∞ x(t) = ±∞, a contradiction. Thus, for the solution x we have
the asymptotic expansion

x(t) = P1ei
√

pt + P2e−i
√

pt + o(eγt) for t → ∞,

from which the boundedness of x follows immediately. �

Proof of Theorem 2.6. (I) Assume that
√

pτ < π. By part (ii) of Proposition 2.5,
it suffices to show that for any root λ = µ + iν of (1.5) we have µ < 0 whenever ν > 0.
Suppose, for the sake of contradiction, that (1.5) has a root λ = µ + iν with µ � 0 and
ν > 0. Clearly, λ is either a root of the equation

λ =
√

pe−λ(τ/2) (3.3)
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or a root of the equation

λ = −√
pe−λ(τ/2). (3.4)

We first consider the case where λ is a root of (3.3). Then

µ + iν =
√

pe−µτ/2[cos( 1
2ντ) − i sin(1

2ντ)]

and, consequently,

µ =
√

pe−µτ/2 cos( 1
2ντ) and ν = −√

pe−µτ/2 sin( 1
2ντ).

Thus, since µ � 0 and ν > 0, we have

cos( 1
2ντ) � 0 and sin(1

2ντ) < 0

and so there exists an integer k such that

2kπ − 1
2π � 1

2ντ < 2kπ.

As ν > 0, we always have k > 0. Therefore,

1
2ντ � 2π − 1

2π = 3
2π, i.e. ν � 3π/τ.

On the other hand, because of µ � 0 and sin(1
2ντ) < 0, it holds that

ν =
√

pe−µτ/2[− sin( 1
2ντ)] � √

p.

Hence,
3π/τ � √

p, i.e.
√

pτ � 3π,

which contradicts our assumption.
Next, let us suppose that λ is a root of (3.4). This means that

µ = −√
pe−µτ/2 cos( 1

2ντ) and ν =
√

pe−µτ/2 sin( 1
2ντ)

and hence, as µ � 0 and ν > 0, we have

cos( 1
2ντ) � 0 and sin(1

2ντ) > 0,

which implies that
2kπ + 1

2π � 1
2ντ < 2kπ + π

for some non-negative integer k. This gives

1
2ντ � 1

2π, i.e. ν � π/τ.

But, since µ � 0 and sin(1
2ντ) > 0, we have

ν =
√

pe−µτ/2 sin( 1
2ντ) � √

p.

So,
π/τ � √

p, i.e.
√

pτ � π,

a contradiction to our assumption.
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(II) Let us assume that
√

pτ = π. In view of parts (i) and (ii) of Proposition 2.5 (see also
the result following Proposition 2.5), it is enough to prove that for any root λ = µ + iν
of (1.5) we have µ � 0 whenever ν > 0 and (1.5) has a root λ = iν with ν > 0. We
immediately verify that λ = i

√
p is a root of (1.5), since

√
pτ = π. So, it remains to show

that for any root λ = µ + iν of (1.5) we have µ � 0 whenever ν > 0. For the sake of
contradiction, let us suppose that there exists a root λ = µ + iν of (1.5) with µ > 0 and
ν > 0. Then λ is either a root of (3.3) or a root of (3.4). If λ is a root of (3.3), then we
follow the same procedure as in the proof of (I) to arrive at the contradiction

√
pτ > 3π.

Moreover, when λ is a root (3.4), we can follow the same steps as in the proof of (I) to
find

√
pτ > π, which is a contradiction.

(III) Suppose that
√

pτ > π. By part (i) of Proposition 2.5, it is sufficient to establish
that (1.5) has a root λ = µ+iν with µ > 0 and ν > 0. Furthermore, it is enough to show
that (3.4) has a root λ = µ+iν with µ > 0 and ν > 0. So, the proof can be accomplished
by using the following well-known lemma.

Lemma 3.1. Let q and σ be positive constants. If qσ > 1
2π, then the equation

λ + qe−λσ = 0

has a root λ = µ + iν with µ > 0 and ν > 0.

The proof of Theorem 2.6 is now complete. �
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