All biochemical reactions directly involve structural changes that may occur over a very wide range of timescales from femtoseconds to seconds. Understanding the mechanism of action thus requires determination of both the static structures of the macromolecule involved and short-lived intermediates between reactant and product. This requires either freeze-trapping of intermediates, for example by cryo-electron microscopy, or direct determination of structures in active systems at near-physiological temperature by time-resolved X-ray crystallography. Storage ring X-ray sources effectively cover the time range down to around 100 ps that reveal tertiary and quaternary structural changes in proteins. The briefer pulses emitted by hard X-ray free electron laser sources extend that range to femtoseconds, which covers critical chemical reactions such as electron transfer, isomerization, breaking of covalent bonds, and ultrafast structural changes in light-sensitive protein chromophores and their protein environment. These reactions are exemplified by the time-resolved X-ray studies by two groups of the FAD-based DNA repair enzyme, DNA photolyase, over the time range from 1 ps to 100 μs.