Changes in paleoenvironments over the last 17,500 yr have been documented by a high-resolution clay mineralogy and grain–size records of Core KNG5 from the northern slope of the South China Sea. Our results indicate that clay minerals are mainly from the Pearl River from 17,500 to 12,500 cal yr BP, and the South China Sea modern current system began to form since 12,500 cal yr BP, as a result, Taiwan turns to be the major contributor of clay minerals after 12,500 cal yr BP. Two grain-size populations with high variability through time were identified in the 13–28 μm and 1–2.2 μm grain-size intervals. The 1–2.2 μm grain-size population are mainly controlled by provenance supply and current transport. The 13–28 μm grain-size fraction could be controlled mainly by the sea-level change. The 1–2.2 μm grain-size population record demonstrates that East Asian Summer Monsoon intensity generally follows changes in insolation and that the response is similar for a large area of China and other northern low-latitude records, implying the globality of the monsoon evolution since Holocene. The anomalous environmental conditions in the northern South China Sea may imply intensified ENSO activity during the late Holocene.