We have developed a method that utilizes repeated sequences of pseudorandomly modulated stimuli for calculation of the SNR either in the time or frequency domains. The method has the advantage that the distribution of SNR over relevant frequencies is readily observed. In addition, a SNR value, calculated as the ratio of the corresponding variances, is an estimate of the true SNR because it has been weighted by the cell's frequency response. The procedure offers significant advantages when studying signal transmission in nonspiking cells like photoreceptors.