We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study two distributions, namely the distribution of the waiting times until given numbers of occurrences of compound patterns and the distribution of the numbers of occurrences of compound patterns in a fixed number of trials. We elucidate the interrelation between these two distributions in terms of the generating functions. We provide perspectives on the problems related to compound patterns in statistics and probability. As an application, the waiting time problem of counting runs of specified lengths is considered in order to illustrate how the distributions of waiting times can be derived from our theoretical results.
The sooner and later waiting time problems have been extensively studied and applied in various areas of statistics and applied probability. In this paper, we give a comprehensive study of ordered series and later waiting time distributions of a number of simple patterns with respect to nonoverlapping and overlapping counting schemes in a sequence of Markov dependent multistate trials. Exact distributions and probability generating functions are derived by using the finite Markov chain imbedding technique. Examples are given to illustrate our results.
Probability generation functions of waiting time distributions of runs and patterns have been used successfully in various areas of statistics and applied probability. In this paper, we provide a simple way to obtain the probability generating functions for waiting time distributions of compound patterns by using the finite Markov chain imbedding method. We also study the characters of waiting time distributions for compound patterns. A computer algorithm based on Markov chain imbedding technique has been developed for automatically computing the distribution, probability generating function, and mean of waiting time for a compound pattern.
Let be the scan statistic of window size r for a sequence of n bistate trials . The scan statistic Sn(r) has been successfully used in various fields of applied probability and statistics, and its distribution has been studied extensively in the literature. Currently, all existing formulae for the distribution of Sn(r) are rather complex, and they can only be numerically implemented when is a sequence of Bernoulli trials, the window size r is less than 20 and the length of the sequence n is not too large. Hence, these formulae have been limiting the practical applications of the scan statistic. In this article, we derive a simple and effective formula for the distribution of Sn(r) via the finite Markov chain embedding technique to overcome some of the limitations of the existing complex formulae. This new formula can be applied when is either a sequence of Bernoulli trials or a sequence of Markov dependent bistate trials. Selected numerical examples are given to illustrate our results.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.