We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
If $C=C\left( R \right)$ denotes the center of a ring $R$ and $g\left( x \right)$ is a polynomial in $C\left[ x \right]$, Camillo and Simón called a ring $g\left( x \right)$-clean if every element is the sum of a unit and a root of $g\left( x \right)$. If $V$ is a vector space of countable dimension over a division ring $D$, they showed that $\text{en}{{\text{d}}_{\,D}}V$ is $g\left( x \right)$-clean provided that $g\left( x \right)$ has two roots in $C\left( D \right)$. If $g\left( x \right)=x-{{x}^{2}}$ this shows that $\text{en}{{\text{d}}_{\,D}}V$ is clean, a result of Nicholson and Varadarajan. In this paper we remove the countable condition, and in fact prove that $\text{en}{{\text{d}}_{\,R}}M$ is $g\left( x \right)$-clean for any semisimple module $M$ over an arbitrary ring $R$ provided that $g\left( x \right)\in \left( x-a \right)\left( x-b \right)C\left[ x \right] $ where $a,b\in C$ and both $b$ and $b-a$ are units in $R$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.