We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cholesterol 24S-hydroxylase (CYP46) catalyzes the conversion of cholesterol to 24S-hydroxycholesterol, the primary cerebral cholesterol elimination product. Only few gene variations in CYP46 gene (CYP46A1) have been investigated for their relevance as genetic risk factors of Alzheimer’s disease (AD) and results are contradictory.
Methods
We performed a gene variability screening in CYP46A1 and investigated the effect of gene variants on the risk of AD and on CSF levels of cholesterol and 24S-hydroxycholesterol.
Results
Two of the identified 16 SNPs in CYP46A1 influenced AD risk in our study (rs7157609: p = 0.016; rs4900442: p = 0.019). The interaction term of both SNPs was also associated with an increased risk of AD (p = 0.006). Haplotypes including both SNPs were calculated and haplotype G–C was identified to influence the risk of AD (p = 0.005). AD patients and non-demented controls, who were carriers of the G–C haplotype, presented with reduced CSF levels of 24S-hydroxycholesterol (p = 0.001) and cholesterol (p < 0.001).
Conclusion
Our results suggest that CYP46A1 gene variations might act as risk factor for AD via an influence on brain cholesterol metabolism.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.