To study the cutting forces, the carbide tip's surface temperature, and the mechanism of secondary chip and main chip formation of face milling stainless steel with a chamfered main cutting edge has been investigated. Theoretical values of cutting forces were calculated and compared to the experimental results with SUS 304 stainless steel plate as a workpiece material. Force data from these tests were used to estimate the empirical constants of the mechanical model and to verify its prediction capabilities. A comparison of the predicted and measured forces shows good agreement. A preliminary discussion is also made for the design of special tool holders and their geometrical configurations. Next, the tips mounted in the tool holders are ground to a chamfered width and the tool dimensions are measured by using a toolmaker microscope.