We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In radiation therapy, to spare normal surrounding tissues, either Multileaf Collimators or Cerrobend blocks are used.
Purpose
The current study focuses on the relative dose distribution under the areas protected by Cerrobend blocks.
Materials and methods
A dual-energy linear accelerator and a Cobalt-60 machine were utilised as radiation sources. Several blocks were designed using commercially available materials to shield radiation fields. The relative dose distribution was then evaluated using extended dose range 2 films.
Results
Results showed that the dose distribution under protected areas depends on several parameters including the width and height of protecting blocks, incident photon beam energy, radiation field size and source to surface distance. An increase in Cerrobend block height from 80 to 95 mm significantly decreases the dose at the protected areas.
Conclusion
An increase in the block width and photon energy decreases the relative dose deposition at the protected area. However, electron and neutron contaminations should also be taken into consideration.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.