We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We aimed to study the influence of age, in normal hearing individuals, on: the masking level difference test, the speech recognition in noise test, the transient evoked otoacoustic emissions test, and the contralateral transient evoked otoacoustic emission suppression test. We also aimed to research the effect of age when using these tests to evaluate the central auditory nervous system.
Methods:
Transient evoked otoacoustic emissions and contralateral transient evoked otoacoustic emission suppression were measured in all subjects. Subjects also underwent masking level difference and speech recognition in noise tests.
Results:
We found a decrease in transient evoked otoacoustic emission amplitudes, speech recognition in noise scores and hearing thresholds with age. We also found that higher masking level difference values were associated with lower speech recognition in noise scores and contralateral transient evoked otoacoustic emission suppression values.
Conclusion:
We conclude that decreasing speech recognition in noise scores are associated with decreasing contralateral transient evoked otoacoustic emission supression values. This effect may be related to medial efferent system dysfunction.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.