Fluctuation of the received signal strength (RSS) is the key performance-limiting factor for Wi-Fi indoor positioning schemes. In this study, the Manhattan distance was used in the weighted K-nearest neighbour (WKNN) algorithm to improve positioning accuracy. Reference point (RP) intervals were optimised to reduce the complexity of the system. Specifically, two new positioning schemes are proposed in this paper. Scheme 1 uses the cellular network to refine the fingerprint database, while Scheme 2 uses the cellular network positioning to locate the node a priori, then uses the Wi-Fi network to further improve accuracy. The experimental results showed that the average positioning error of Scheme 1 was 1·60 m, a reduction of 12% compared with the existing Wi-Fi fingerprinting schemes. In Scheme 2, when double cellular networks were used, RP usage was reduced by 64% and the calculating time was 0·24 s, a reduction of up to 69·5% compared with the Manhattan-WKNN algorithm. These proposed schemes are suitable for high accuracy and real-time positioning situations, respectively.