This paper describes a novel approach to capsular endoscopy that takes advantage of active magnetic locomotion in the gastrointestinal tract guided by an anthropomorphic robotic arm. Simulations were performed to select the design parameters allowing an effective and reliable magnetic link between the robot end-effector (endowed with a permanent magnet) and the capsular device (endowed with small permanent magnets). In order to actively monitor the robotic endoluminal system and to efficiently perform diagnostic and surgical medical procedures, a feedback control based on inertial sensing was also implemented. The proposed platform demonstrated to be a reliable solution to move and steer a capsular device in a slightly insufflated gastrointestinal lumen.