The necessary and sufficient condition for unilateral characterization of Gaussian Markov fields and the Besag-Moran positivity condition for second-order autonormal bilateral models define the same tetrahedral domain of achievable regression parameters. A bijective function maps this domain to a different tetrahedral domain of parameters in the Pickard model. These two domains are identical to the corresponding ones in the Welberry-Carroll model. We obtain series solutions for correlation coefficients and study their limits near the boundaries of the first domain.