In this article we examine R&D projects where the project status changes according to a general dynamic stochastic equation. This allows for both continuous and jump behavior of the project status. The time parameter is continuous. The decision variable includes a non-stationary resource expenditure strategy and a stopping policy which determines when the project should be terminated. Characterization of stationary policies becomes straightforward in the present setting. A non-linear equation is determined for the expected discounted return from the project. This equation, which is of a very general nature, has been considered in certain special cases, where it becomes manageable. The examples include situations where the project status changes according to a compound Poisson process, a geometric Brownian motion, and a Brownian motion with drift. In those cases we demonstrate how the exact solution can be obtained and the optimal policy found.