If Fn∗ is the n-fold Stieltjes convolution of the increasing function F, then a version of Chernoff's theorem, on the limiting behaviour of (Fn∗(na))1/n, is established for Fn∗. If Z(n)(t) is the number of the nth-generation people to the left of t in a supercritical branching random walk then an analogous result is proved for Z(n).