Given two equivalent locally compact Hausdorff groupoids, We prove that the Bost conjecture with Banach algebra coefficients is true for one if and only if it is true for the other. This also holds for the Bost conjecture with C*- coefficients. To show these results, the functoriality of Lafforgue's KK-theory for Banach algebras and groupoids with respect to generalised morphisms of groupoids is established. It is also shown that equivalent groupoids have Morita equivalent L1-algebras (with Banach algebra coefficients).