We investigate the evolution of an almost flat membrane driven by competition of the homogeneous, Frank, and bending energies as wellas the coupling of the local order of the constituent molecules of the membrane to its curvature.We propose an alternative to the model in [J.B. Fournier and P. Galatoa, J. Phys. II7 (1997) 1509–1520; N. Uchida, Phys. Rev. E66 (2002) 040902] which replacesa Ginzburg-Landau penalization for the length of theorder parameter by a rigid constraint.We introduce a fully discrete scheme, consisting of piecewise linearfinite elements, show that it is unconditionally stable for a large range of the elastic moduli in the model, and prove its convergence(up to subsequences) thereby proving the existence of a weak solutionto the continuous model. Numerical simulations are included that examine typical model situations, confirm our theory, and explore numerical predictions beyond that theory.