The processes of trapping, compression, and acceleration of short electron bunches externally injected into the wakefields generated by intense femtosecond laser pulse in a plasma channel are analyzed and optimized. The influence of the laser non-linear dynamics to the longitudinal bunch compression and impact of the beam loading effect (self-action of the bunch charge) to the finite energy and the energy spread of the accelerated electrons are investigated. The limitations to the charge of accelerated electron bunch determined by the requirement of a small width of the electron energy distribution of the bunch are found.