Water availability in the semiarid western coast of Chile (30–32°S) is conditioned by high interannual precipitation variability, reflecting the transition between arid subtropical and moist mid-latitude climates in the Southeastern Pacific Ocean. A paleoclimate reconstruction based on the latest Pleistocene–Holocene geological record from the Quebrada Santa Julia archeological site in Chile (31°50′S) and on modern meteorological mechanisms producing alluvial episodes in this region indicates a major change in the rainfall regime shortly after 8600 cal yr BP. This, together with other paleoclimate proxies along the west coast of South America (34°–14°S), suggests La Niña-like conditions 13,000–8600 cal yr BP. Based on sedimentological and geomorphologic evidence, we hypothesized that the absence of heavy rainfall events in northern Chile and the new hydrological regime that prevailed ca. 8600–5700 cal yr BP in north-central Chile resulted from an increase in the large-scale westerly flow over central Chile, as expected in near-neutral ENSO conditions. This atmospheric circulation anomaly is compatible with an equatorward shift of the influence of the Southeast Pacific Subtropical Anticyclone relative to the early Holocene, prior to the onset of modern ENSO variability.