In this paper, the backstepping strategy is used to design an adaptive tracking controller for rigid-link electrically driven robots in the presence of parametric uncertainties in kinematics, manipulator dynamics, and actuator dynamics. To avoid acceleration measurements, two techniques are exploited. One technique adds compensation control terms to the control law signal. The other uses a linear in variable property of the Jacobian matrix. Global asymptotic convergence of the end-effector motion tracking errors is shown via Lyapunov analysis. Simulation results are presented to show the effectiveness of the proposed control scheme.