We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Alfentanil was reported to relax the rat aorta by direct action on the vascular smooth muscle. The aims of this in vitro study were to examine the effect of alfentanil on phenylephrine-induced contractions in the rat aorta and to determine the cellular mechanism associated with this process.
Methods
Endothelium-denuded aortic rings were suspended in order to record isometric tension. In the rings with or without 10−6 mol naloxone or 10−5 mol verapamil, the concentration–response curves for phenylephrine and potassium chloride were generated in the presence or absence of alfentanil (10−6, 5 × 10−5, 10−4 mol). In the rings exposed to a calcium-free isotonic depolarizing solution, the contractile response induced by the addition of calcium was assessed in the presence or absence of alfentanil (5 × 10−5, 10−4 mol).
Results
Alfentanil (5 × 10−5, 10−4 mol) attenuated (P < 0.05) the phenylephrine-induced contraction in the ring with or without 10−6 mol naloxone but had no effect on the phenylephrine-induced contraction in the rings pretreated with verapamil. Alfentanil (5 × 10−5, 10−4 mol) produced a significant rightward shift (P < 0.01) in the potassium chloride dose–response curve, and attenuated the contractile response (P < 0.001) induced by calcium in the calcium-free isotonic depolarizing solution in a dose-dependent manner.
Conclusions
A supraclinical dose of alfentanil attenuates the phenylephrine-induced contraction via an inhibitory effect on calcium influx by blocking the l-type calcium channels in the rat aortic vascular smooth muscle.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.