For
p\,>\,0 and for a given set
E of type
{{G}_{\delta }} in the boundary of the unit disc
\partial \mathbb{D} we construct a holomorphic function
f\,\in \,\mathbb{O}\left( \mathbb{D} \right) such that
{{\int_{\mathbb{D}\backslash \left[ 0,\,1 \right]E}{\left| f \right|}}^{p}}\,d{{\mathfrak{L}}^{2}}\,<\,\infty \,\text{and}\,E\,=\,{{E}^{p}}\left( f \right)\,=\,\{\,z\,\in \,\partial \mathbb{D}\,:\,\int _{0}^{1}\,{{\left| f\left( tz \right) \right|}^{p}}\,dt\,=\,\infty \}.In particular if a set
E has a measure equal to zero, then a function
f is constructed as integrable with power
p on the unit disc
\mathbb{D}.