We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Furstenberg [Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory1 (1967), 1–49] calculated the Hausdorff and Minkowski dimensions of one-sided subshifts in terms of topological entropy. We generalize this to $\mathbb{Z}^{2}$-subshifts. Our generalization involves mean dimension theory. We calculate the metric mean dimension and the mean Hausdorff dimension of $\mathbb{Z}^{2}$-subshifts with respect to a subaction of $\mathbb{Z}$. The resulting formula is quite analogous to Furstenberg’s theorem. We also calculate the rate distortion dimension of $\mathbb{Z}^{2}$-subshifts in terms of Kolmogorov–Sinai entropy.
Wyner and Ziv (1989) studied the asymptotic properties of recurrence times of stationary ergodic processes, and applied the results to obtain optimal data compression schemes in information transmission. Since then many data compression algorithms based upon string matching of a sequence from an information source with a database have been proposed and studied. In this paper we consider Gaussian stationary processes representing an information source and a database, and study problems of string matching with distortion. We prove theorems concerning the asymptotic behavior of the probability of string matching with distortion and the waiting time for the string matching.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.