An algebraic multilevel method is proposed for efficiently simulating linear wave propagation using higher-order numerical schemes. This method is used in conjunction with the Finite Volume Time Domain (FVTD) technique for the numerical solution of the time-domain Maxwell’s equations in electromagnetic scattering problems. In the multilevel method the solution is cycled through spatial operators of varying orders of accuracy, while maintaining highest-order accuracy at coarser approximation levels through the use of the relative truncation error as a forcing function. Higher-order spatial accuracy can be enforced using the multilevel method at a fraction of the computational cost incurred in a conventional higher-order implementation. The multilevel method is targeted towards electromagnetic scattering problems at large electrical sizes which usually require long simulation times due to the use of very fine meshes dictated by point-per-wavelength requirements to accurately model wave propagation over long distances.