The dynamics of moving solids with unilateral contacts are often modelled by assuming rigidity, point contacts, and Coulomb friction. The canonical example of a rigid rod with one endpoint slipping in two dimensions along a fixed surface (sometimes referred to as Painlevé rod) has been investigated thoroughly by many authors. The generic transitions of that system include three classical transitions (slip-stick, slip reversal, and liftoff) as well as a singularity called dynamic jamming, i.e., convergence to a codimension 2 manifold in state space, where rigid body theory breaks down. The goal of this paper is to identify similar singularities arising in systems with multiple point contacts, and in a broader setting to make initial steps towards a comprehensive list of generic transitions from slip motion to other types of dynamics. We show that – in addition to the classical transitions – dynamic jamming remains a generic phenomenon. We also find new forms of singularity and solution indeterminacy, as well as generic routes from sliding to self-excited microscopic or macroscopic oscillations.