Our purpose is to study the geometry of linear Weingarten spacelike hypersurfaces immersed in a locally symmetric Einstein spacetime, whose sectional curvature is supposed to obey some standard restrictions. In this setting, by using as main analytical tool a generalized maximum principle for complete non-compact Riemannian manifolds, we establish sufficient conditions to guarantee that such a hypersurface must be either totally umbilical or an isoparametric hypersurface with two distinct principal curvatures, one of which is simple. Applications to the de Sitter space are given.