We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We describe two kinds of regular invariant measures on the boundary path space $\partial E$ of a second countable topological graph E, which allows us to describe all extremal tracial weights on $C^{*}(E)$ which are not gauge-invariant. Using this description, we prove that all tracial weights on the C$^{*}$-algebra $C^{*}(E)$ of a second countable topological graph E are gauge-invariant when E is free. This in particular implies that all tracial weights on $C^{*}(E)$ are gauge-invariant when $C^{*}(E)$ is simple and separable.
We investigate almost minimal actions of abelian groups and their crossed products. As an application, given multiplicatively independent integers p and q, we show that Furstenberg’s $\times p,\times q$ conjecture holds if and only if the canonical trace is the only faithful extreme tracial state on the $C^*$-algebra of the group $\mathbb {Z}[\frac {1}{pq}]\rtimes \mathbb {Z}^2$. We also compute the primitive ideal space and K-theory of $C^*(\mathbb {Z}[\frac {1}{pq}]\rtimes \mathbb {Z}^2)$.
The action on the trace space induced by a generic automorphism of a suitable finite classifiable
${\mathrm {C}^*}$
-algebra is shown to be chaotic and weakly mixing. Model
${\mathrm {C}^*}$
-algebras are constructed to observe the central limit theorem and other statistical features of strongly chaotic tracial actions. Genericity of finite Rokhlin dimension is used to describe
$KK$
-contractible stably projectionless
${\mathrm {C}^*}$
-algebras as crossed products.
For every minimal one-sided shift space X over a finite alphabet, left special elements are those points in X having at least two preimages under the shift operation. In this paper, we show that the Cuntz–Pimsner $C^*$-algebra $\mathcal {O}_X$ has nuclear dimension $1$ when X is minimal and the number of left special elements in X is finite. This is done by describing concretely the cover of X, which also recovers an exact sequence, discovered before by Carlsen and Eilers.
We investigate dynamical systems consisting of a locally compact Hausdorff space equipped with a partially defined local homeomorphism. Important examples of such systems include self-covering maps, one-sided shifts of finite type and, more generally, the boundary-path spaces of directed and topological graphs. We characterize the topological conjugacy of these systems in terms of isomorphisms of their associated groupoids and C*-algebras. This significantly generalizes recent work of Matsumoto and of the second- and third-named authors.
We initiate the study of C*-algebras and groupoids arising from left regular representations of Garside categories, a notion which originated from the study of Braid groups. Every higher rank graph is a Garside category in a natural way. We develop a general classification result for closed invariant subspaces of our groupoids as well as criteria for topological freeness and local contractiveness, properties which are relevant for the structure of the corresponding C*-algebras. Our results provide a conceptual explanation for previous results on gauge-invariant ideals of higher rank graph C*-algebras. As another application, we give a complete analysis of the ideal structures of C*-algebras generated by left regular representations of Artin–Tits monoids.
Given a self-similar set K defined from an iterated function system
$\Gamma =(\gamma _{1},\ldots ,\gamma _{d})$
and a set of functions
$H=\{h_{i}:K\to \mathbb {R}\}_{i=1}^{d}$
satisfying suitable conditions, we define a generalized gauge action on Kajiwara–Watatani algebras
$\mathcal {O}_{\Gamma }$
and their Toeplitz extensions
$\mathcal {T}_{\Gamma }$
. We then characterize the KMS states for this action. For each
$\beta \in (0,\infty )$
, there is a Ruelle operator
$\mathcal {L}_{H,\beta }$
, and the existence of KMS states at inverse temperature
$\beta $
is related to this operator. The critical inverse temperature
$\beta _{c}$
is such that
$\mathcal {L}_{H,\beta _{c}}$
has spectral radius 1. If
$\beta <\beta _{c}$
, there are no KMS states on
$\mathcal {O}_{\Gamma }$
and
$\mathcal {T}_{\Gamma }$
; if
$\beta =\beta _{c}$
, there is a unique KMS state on
$\mathcal {O}_{\Gamma }$
and
$\mathcal {T}_{\Gamma }$
which is given by the eigenmeasure of
$\mathcal {L}_{H,\beta _{c}}$
; and if
$\beta>\beta _{c}$
, including
$\beta =\infty $
, the extreme points of the set of KMS states on
$\mathcal {T}_{\Gamma }$
are parametrized by the elements of K and on
$\mathcal {O}_{\Gamma }$
by the set of branched points.
We consider groupoids constructed from a finite number of commuting local homeomorphisms acting on a compact metric space and study generalized Ruelle operators and
$ C^{\ast } $
-algebras associated to these groupoids. We provide a new characterization of
$ 1 $
-cocycles on these groupoids taking values in a locally compact abelian group, given in terms of
$ k $
-tuples of continuous functions on the unit space satisfying certain canonical identities. Using this, we develop an extended Ruelle–Perron–Frobenius theory for dynamical systems of several commuting operators (
$ k $
-Ruelle triples and commuting Ruelle operators). Results on KMS states on
$ C^{\ast } $
-algebras constructed from these groupoids are derived. When the groupoids being studied come from higher-rank graphs, our results recover existence and uniqueness results for KMS states associated to the graphs.
We give many examples of algebraic actions which are factors of Bernoulli shifts. These include certain harmonic models over left-orderable groups of large enough growth, as well as algebraic actions associated to certain lopsided elements in any left-orderable group. For many of our examples, the acting group is amenable so these actions are Bernoulli (and not just a factor of a Bernoulli), but there is no obvious Bernoulli partition.
We characterize topological conjugacy classes of one-sided topological Markov shifts in terms of the associated Cuntz–Krieger algebras and their gauge actions with potentials.
Let
$\phi :X\to X$
be a homeomorphism of a compact metric space X. For any continuous function
$F:X\to \mathbb {R}$
there is a one-parameter group
$\alpha ^{F}$
of automorphisms (or a flow) on the crossed product
$C^*$
-algebra
$C(X)\rtimes _{\phi }\mathbb {Z}$
defined such that
$\alpha ^{F}_{t}(fU)=fUe^{-itF}$
when
$f \in C(X)$
and U is the canonical unitary in the construction of the crossed product. In this paper we study the Kubo--Martin--Schwinger (KMS) states for these flows by developing an intimate relation to the ergodic theory of non-singular transformations and show that the structure of KMS states can be very rich and complicated. Our results are complete concerning the set of possible inverse temperatures; in particular, we show that when
$C(X) \rtimes _{\phi } \mathbb Z$
is simple this set is either
$\{0\}$
or the whole line
$\mathbb R$
.
This paper is a continuation of the paper, Matsumoto [‘Subshifts,
$\lambda $
-graph bisystems and
$C^*$
-algebras’, J. Math. Anal. Appl. 485 (2020), 123843]. A
$\lambda $
-graph bisystem consists of a pair of two labeled Bratteli diagrams satisfying a certain compatibility condition on their edge labeling. For any two-sided subshift
$\Lambda $
, there exists a
$\lambda $
-graph bisystem satisfying a special property called the follower–predecessor compatibility condition. We construct an AF-algebra
${\mathcal {F}}_{\mathcal {L}}$
with shift automorphism
$\rho _{\mathcal {L}}$
from a
$\lambda $
-graph bisystem
$({\mathcal {L}}^-,{\mathcal {L}}^+)$
, and define a
$C^*$
-algebra
${\mathcal R}_{\mathcal {L}}$
by the crossed product
. It is a two-sided subshift analogue of asymptotic Ruelle algebras constructed from Smale spaces. If
$\lambda $
-graph bisystems come from two-sided subshifts, these
$C^*$
-algebras are proved to be invariant under topological conjugacy of the underlying subshifts. We present a simplicity condition of the
$C^*$
-algebra
${\mathcal R}_{\mathcal {L}}$
and the K-theory formulas of the
$C^*$
-algebras
${\mathcal {F}}_{\mathcal {L}}$
and
${\mathcal R}_{\mathcal {L}}$
. The K-group for the AF-algebra
${\mathcal {F}}_{\mathcal {L}}$
is regarded as a two-sided extension of the dimension group of subshifts.
We introduce the notion of balanced strong shift equivalence between square non-negative integer matrices, and show that two finite graphs with no sinks are one-sided eventually conjugate if and only if their adjacency matrices are conjugate to balanced strong shift equivalent matrices. Moreover, we show that such graphs are eventually conjugate if and only if one can be reached by the other via a sequence of out-splits and balanced in-splits, the latter move being a variation of the classical in-split move introduced by Williams in his study of shifts of finite type. We also relate one-sided eventual conjugacies to certain block maps on the finite paths of the graphs. These characterizations emphasize that eventual conjugacy is the one-sided analog of two-sided conjugacy.
We provide a systematic study of a non-commutative extension of the classical Anzai skew-product for the cartesian product of two copies of the unit circle to the non-commutative 2-tori. In particular, some relevant ergodic properties are proved for these quantum dynamical systems, extending the corresponding ones enjoyed by the classical Anzai skew-product. As an application, for a uniquely ergodic Anzai skew-product $\unicode[STIX]{x1D6F7}$ on the non-commutative $2$-torus $\mathbb{A}_{\unicode[STIX]{x1D6FC}}$, $\unicode[STIX]{x1D6FC}\in \mathbb{R}$, we investigate the pointwise limit, $\lim _{n\rightarrow +\infty }(1/n)\sum _{k=0}^{n-1}\unicode[STIX]{x1D706}^{-k}\unicode[STIX]{x1D6F7}^{k}(x)$, for $x\in \mathbb{A}_{\unicode[STIX]{x1D6FC}}$ and $\unicode[STIX]{x1D706}$ a point in the unit circle, and show that there are examples for which the limit does not exist, even in the weak topology.
A one-sided shift of finite type $(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$ determines on the one hand a Cuntz–Krieger algebra ${\mathcal{O}}_{A}$ with a distinguished abelian subalgebra ${\mathcal{D}}_{A}$ and a certain completely positive map $\unicode[STIX]{x1D70F}_{A}$ on ${\mathcal{O}}_{A}$. On the other hand, $(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$ determines a groupoid ${\mathcal{G}}_{A}$ together with a certain homomorphism $\unicode[STIX]{x1D716}_{A}$ on ${\mathcal{G}}_{A}$. We show that each of these two sets of data completely characterizes the one-sided conjugacy class of $\mathsf{X}_{A}$. This strengthens a result of Cuntz and Krieger. We also exhibit an example of two irreducible shifts of finite type which are eventually conjugate but not conjugate. This provides a negative answer to a question of Matsumoto of whether eventual conjugacy implies conjugacy.
We prove simplicity of all intermediate $C^{\ast }$-algebras $C_{r}^{\ast }(\unicode[STIX]{x1D6E4})\subseteq {\mathcal{B}}\subseteq \unicode[STIX]{x1D6E4}\ltimes _{r}C(X)$ in the case of minimal actions of $C^{\ast }$-simple groups $\unicode[STIX]{x1D6E4}$ on compact spaces $X$. For this, we use the notion of stationary states, recently introduced by Hartman and Kalantar [Stationary $C^{\ast }$-dynamical systems. Preprint, 2017, arXiv:1712.10133]. We show that the Powers’ averaging property holds for the reduced crossed product $\unicode[STIX]{x1D6E4}\ltimes _{r}{\mathcal{A}}$ for any action $\unicode[STIX]{x1D6E4}\curvearrowright {\mathcal{A}}$ of a $C^{\ast }$-simple group $\unicode[STIX]{x1D6E4}$ on a unital $C^{\ast }$-algebra ${\mathcal{A}}$, and use it to prove a one-to-one correspondence between stationary states on ${\mathcal{A}}$ and those on $\unicode[STIX]{x1D6E4}\ltimes _{r}{\mathcal{A}}$.
We define branching systems for finitely aligned higher-rank graphs. From these, we construct concrete representations of higher-rank graph C*-algebras on Hilbert spaces. We prove a generalized Cuntz–Krieger uniqueness theorem for periodic single-vertex 2-graphs. We use this result to give a sufficient condition under which representations of periodic single-vertex 2-graph C*-algebras arising from branching systems are faithful.
We continue to investigate branching systems of directed graphs and their connections with graph algebras. We give a sufficient condition under which the representation induced from a branching system of a directed graph is faithful and construct a large class of branching systems that satisfy this condition. We finish the paper by providing a proof of the converse of the Cuntz–Krieger uniqueness theorem for graph algebras by means of branching systems.
We deduce properties of the Koopman representation of a positive entropy probability measure-preserving action of a countable, discrete, sofic group. Our main result may be regarded as a ‘representation-theoretic’ version of Sinaǐ’s factor theorem. We show that probability measure-preserving actions with completely positive entropy of an infinite sofic group must be mixing and, if the group is nonamenable, have spectral gap. This implies that if $\unicode[STIX]{x1D6E4}$ is a nonamenable group and $\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ is a probability measure-preserving action which is not strongly ergodic, then no action orbit equivalent to $\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ has completely positive entropy. Crucial to these results is a formula for entropy in the presence of a Polish, but a priori noncompact, model.
We introduce a family of infinite nonamenable discrete groups as an interpolation of the Higman–Thompson groups by using the topological full groups of the groupoids defined by $\beta $-expansions of real numbers. They are regarded as full groups of certain interpolated Cuntz algebras, and realized as groups of piecewise-linear functions on the unit interval in the real line if the $\beta $-expansion of $1$ is finite or ultimately periodic. We also classify them by a number-theoretical property of $\beta $.