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Abstract
The action on the trace space induced by a generic automorphism of a suitable finite classifiable C∗-algebra is
shown to be chaotic and weakly mixing. Model C∗-algebras are constructed to observe the central limit theorem
and other statistical features of strongly chaotic tracial actions. Genericity of finite Rokhlin dimension is used to
describe 𝐾𝐾-contractible stably projectionless C∗-algebras as crossed products.

1. Introduction

This article is an investigation of the tracial properties of endomorphisms of classifiable C∗-algebras.
Here, ‘classifiable’ means specifically via the Elliott invariant

Ell(𝐴) = (𝐾0(𝐴), 𝐾0(𝐴)+,Σ(𝐴), 𝑇 (𝐴), 𝜌𝐴 : 𝐾0(𝐴) → Aff (𝑇 (𝐴)), 𝐾1(𝐴)),

whose components are K-theory 𝐾∗(𝐴) (together with its order structure 𝐾0(𝐴)+ and scale Σ(𝐴), which
in the unital case is simply the 𝐾0-class of the unit), the tracial state space 𝑇 (𝐴) and the pairing 𝜌𝐴
between the two. By [40, 50, 51, 41, 48, 49] (see also [16]), infinite-dimensional, simple, separable C∗-
algebras that have continuous scale, finite nuclear dimension (which by [17, 18, 87, 92] is equivalent to
tensorial absorption of the Jiang–Su algebra Z) and satisfy the universal coefficient theorem (UCT), are
classifiable. And by [89], a finer invariant than Ell is needed to extend classification beyond this class.

In this paper, we consider both unital and nonunital classifiable C∗-algebras. ‘Continuous scale’ is
a technical assumption that entails algebraic simplicity of A and compactness of 𝑇 (𝐴) (see [42, §5]).
It is automatic for a separable, unital C∗-algebra and in the nonunital case it in particular ensures
that the algebra does not support any unbounded lower semicontinuous traces. While the classification
presented in [41, 48, 49] goes beyond C∗-algebras with continuous scale, it is a necessary assumption
for the analysis undertaken in the sequel.

An important problem in the study of group actions on simple, separable, Z-stable C∗-algebras is to
determine when a given action 𝛼 : 𝐺 → Aut(𝐴) is cocycle conjugate to its tensor product 𝛼 ⊗ idZ with
the trivial action on Z . (As discussed in the introduction of [94], these are the actions one can expect to
classify.) In [46], the problem is solved for actions of discrete, countable, amenable groups G on unital
C∗-algebras A under the assumptions that the extreme boundary 𝜕𝑒 (𝑇 (𝐴)) of 𝑇 (𝐴) is compact and of
finite covering dimension and that the action of G on 𝜕𝑒 (𝑇 (𝐴)) has finite orbits of bounded size, with
Hausdorff orbit space 𝜕𝑒 (𝑇 (𝐴))/𝐺. This motivates us to pose the following.
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2 B. Jacelon

Question A. What is the generic tracial behaviour of an automorphism of a stably finite classifiable
C∗-algebra?

In our context, stable finiteness is equivalent to the trace space 𝑇 (𝐴) being nonempty (see [79,
§1.1.3]). By ‘generic tracial behaviour’ we mean that we seek to identify properties of induced affine
homeomorphisms𝑇 (𝐴) → 𝑇 (𝐴) that hold residually, that is, for at least a dense𝐺 𝛿 set of automorphisms
𝐴 → 𝐴 (in the topology of pointwise convergence). We will address Question A under the additional
assumptions that:

◦ the extreme boundary 𝜕𝑒 (𝑇 (𝐴)) of 𝑇 (𝐴) is a finite-dimensional, compact, connected topological
manifold;

◦ the automorphism 𝛼 of A fixes an Oxtoby–Ulam (OU) trace (roughly, a noncommutative analogue of
Lebesgue measure – see §2.1 and §3);

◦ the pairing 𝜌𝐴 : 𝐾0(𝐴) → Aff (𝑇 (𝐴)) is trivial;
◦ 𝐾1(𝐴) is torsion free.

With these hypotheses, we are able to use classification to lift known results about topological
dynamical systems to the C∗-level. The strategy is simple (as long as we are willing to make free use
of heavy classification machinery): Given an endomorphism 𝛼, nudge its action on 𝜕𝑒 (𝑇 (𝐴)) to be in
a desired topological class, then lift the perturbed invariant to an endomorphism 𝛽 which, by virtue of
the closeness of Ell(𝛽) to Ell(𝛼), is (up to conjugation by a unitary) within a given 𝜀 of 𝛼 on a given
finite set. Actually, the invariant we must use is not Ell but one that also includes ‘total K-theory’ and
‘Hausdorffised algebraic 𝐾1’ (see the proof of Theorem 3.4 for a brief primer), together with suitable
pairings. The above assumptions on K-theory ensure that the compatibility demanded by these pairings
is automatically satisfied.

In short, the following theorem indicates that, when there are infinitely many extremal traces, the
typical situation can be very different to the one considered in [46]. (Note, however, that it does not
represent an obstruction to generalising [46] for single automorphisms; in the breakthrough article [94],
it is shown how to treat the portion of 𝜕𝑒 (𝑇 (𝐴)) with unbounded orbits.)

Theorem A. For every OU trace 𝜏 on A, the generic 𝜏-preserving automorphism of A in-
duces a homeomorphism of 𝜕𝑒 (𝑇 (𝐴)) that is weakly mixing and is moreover Devaney-chaotic if
dim 𝜕𝑒 (𝑇 (𝐴)) ≥ 2.

See §2 for the definitions of chaos and mixing, which are properties that are satisfied by, for example,
hyperbolic toral automorphisms like Arnold’s cat map. A particular consequence for the algebras
covered by Theorem A is that, in contrast to the case of finitely many extremal traces, a typical tracial
property of automorphisms is sensitive dependence on initial conditions: Arbitrarily close extremal
traces eventually get moved far apart.

Whereas weak mixing is residual, in both the measure-theoretic [53] and topological [61, 2] settings,
strong mixing is enjoyed by meagre sets of measure-preserving transformations [77]. On the other
hand, many interesting dynamical systems, for example, those associated to Anosov diffeomorphisms
[12, §1E], are not just strongly mixing but have exponentially fast mixing rates. This chaotic behaviour
is reflected in such statistical features as exponential decay of correlations (EDC) and the central limit
theorem (CLT). Once again, classification will afford us C∗-interpretations of these phenomena.

We will, however, need some additional structure in the ambient C∗-algebra to have satisfactory
versions of the CLT and EDC, as these require not just continuous but Lipschitz (or at least Hölder
continuous) observables. To that end, for a given compact, connected metric space (𝑋, 𝑑), we construct
in Theorem 4.4 an approximately subhomogeneous C∗-algebra A with 𝜕𝑒 (𝑇 (𝐴)) � 𝑋 and for which
{𝑎 | 𝑎̂ ∈ Lip(𝑋, 𝑑)} is dense in the set 𝐴𝑠𝑎 of self-adjoint elements of A (where 𝑎̂ : 𝑋 → R, which
we refer to as an observable of the tracial dynamics, denotes the evaluation map 𝜏 ↦→ 𝜏(𝑎)). Theorem
4.9 then provides the means of lifting a given dynamical system on X to the C∗-level. In the uniquely
ergodic but not necessarily chaotic setting, following [7] (see Proposition 4.3) this structure will allow
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for uniform estimates of large deviation, that is, finite-time estimates of the rate of the tracial convergence
guaranteed by Birkhoff’s ergodic theorem.

The models of the previous paragraph will in general have complicated 𝐾1-groups. This is potentially
vexing if one is interested in managing, via the Pimsner–Voiculescu sequence [74], the K-theory of
the crossed product of A by an automorphism 𝛼 : 𝐴 → 𝐴 constructed to witness a given topological
dynamical system ℎ : 𝑋 → 𝑋 . This issue can be addressed by lifting h not to an automorphism but to a
𝐾1-killing endomorphism, which, as in [83], can be extended to an automorphism of a stably isomorphic
C∗-algebra. (Endomorphisms also allow for the inclusion of noninvertible tracial dynamics ℎ : 𝑋 → 𝑋 ,
for example, the Pomeau–Manneville-type system described in [59, §5], and to appeal to and interpret
existing results [9] about such systems.) In particular, if X is an odd sphere, then the extended action
is on an inductive limit of prime dimension drop algebras; upon computing the Elliott invariant (see
Example 4.10 and Remark 5.2), one learns via classification that these crossed products are just different
descriptions of the ones considered in [31].

The above discussion of the range of the Elliott invariant of crossed products motivates our second
question.

Question B. Which classifiable C∗-algebras can be described as crossed products of stably finite
classifiable C∗-algebras by the integers?

Since Kirchberg algebras are already known to be included in the answer to Question B (see, for
example, [79, Proposition 4.3.3]), we focus our attention on stably finite targets. Combining work of
Downarowicz [37] and Szabó, Wu and Zacharias [84], we show that every metrisable Choquet simplex
is attainable as the tracial state space of a crossed product of a classifiable C∗-algebra A, for which
𝜕𝑒 (𝑇 (𝐴)) is a Cantor space, by an automorphism with finite Rokhlin dimension. In the 𝐾𝐾-contractible
setting (or equivalently under the UCT, assuming that 𝐾∗(𝐴) = 0), [41] then shows that, up to stable
isomorphism, the full class is exhausted.

Theorem B. Let K be the class of infinite-dimensional, simple, separable, 𝐾𝐾-contractible C∗-algebras
that satisfy the UCT and have continuous scale, nonempty trace space and finite nuclear dimension.
Then, for every 𝐵 ∈ K there exists 𝐴 ∈ K and an automorphism 𝛼 ∈ Aut(𝐴) such that 𝜕𝑒 (𝑇 (𝐴)) is
compact and zero dimensional, and 𝐴 �𝛼 Z � 𝐵.

This article is organised as follows. In §2, we collate relevant properties of measure-preserving
topological dynamical systems. Then in §3, we explain how to use classification to lift these properties
to statements about C∗-dynamical systems. Examples of strongly chaotic dynamics, descriptions of
associated statistical features like the CLT and EDC and the construction of models to suitably witness
these phenomena are described in §4. Finally, in §5, we show how to obtain 𝐾𝐾-contractible classifiable
C∗-algebras as crossed products.

2. Generic properties of topological dynamical systems

Chaos and mixing will be familiar notions to those working in dynamical systems but perhaps not to
C∗-algebraists. We briefly introduce these concepts for the reader’s convenience.

2.1. Chaos

Definition 2.1. Let (𝑋, 𝑑) be an infinite metric space and ℎ : 𝑋 → 𝑋 a continuous map. The dynamical
system (𝑋, ℎ) is said to be chaotic in the sense of Devaney [33, Definition 8.5] if:

1. for every nonempty open sets 𝑈,𝑉 ⊆ 𝑋 , there exists 𝑛 ∈ N such that ℎ𝑛 (𝑈) ∩ 𝑉 ≠ ∅ (that is, (𝑋, ℎ)
is transitive or equivalently, irreducible);

2. the periodic points of h are dense in X;
3. the system has sensitive dependence on initial conditions, that is, there exists 𝛿 > 0 such that, for

every 𝑥 ∈ 𝑋 and every 𝜀 > 0, there exist 𝑦 ∈ 𝑋 and 𝑛 ∈ N such that 𝑑 (𝑥, 𝑦) < 𝜀 and 𝑑 (ℎ𝑛𝑥, ℎ𝑛𝑦) ≥ 𝛿.
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4 B. Jacelon

As pointed out in [6], (3) actually follows from (1) and (2) (and if X is compact, it is easy to see directly
that (3) is preserved under topological conjugation). This means that this notion of chaos is genuinely
topological. An equivalent characterisation is given in [90]: (𝑋, ℎ) is chaotic if and only if, for every
nonempty open sets𝑈,𝑉 ⊆ 𝑋 , there is a periodic point whose forward orbit intersects both U and V.

An important class of Devaney-chaotic dynamical systems is provided by the irreducible components
of nonwandering Smale spaces. (See [12, Theorem 3.5] and [12, 3.8]. Note that these results, though
stated for diffeomorphisms, apply just as well to the abstract setting of Smale spaces; see [80, Chapter
7].) We will see some more examples in §4, but in fact, under certain circumstances that we now recall
(Theorem 2.3 below), Devaney-chaotic maps are generic among measure-preserving homeomorphisms
of topological manifolds.

The manifolds discussed in this paper will always be compact and will often be connected. Measures
will typically be particularly tractable.
Definition 2.2 [4]. A Borel probability measure 𝜇 on a topological manifold X is called an Oxtoby–Ulam
(OU) measure if it is faithful, nonatomic and zero on the boundary 𝜕𝑋 of X (if there is one).

When 𝑋 = [0, 1]𝑛, OU measures are precisely those that are homeomorphic images of Lebesgue
measure (see [72, Theorem 2]), and when X is boundaryless, OU measures are generic (see [44,
Proposition 1.4]).

We equip the set H(𝑋, 𝜇) (respectively, C (𝑋, 𝜇)) of 𝜇-preserving homeomorphisms (respectively,
continuous maps) 𝑋 → 𝑋 with the compact open topology, which for compact metric spaces X means
the topology of uniform convergence. A complete metric for the topology on H(𝑋, 𝜇) is

𝜌(𝑔, ℎ) = sup
𝑥∈𝑋

𝑑 (𝑔(𝑥), ℎ(𝑥)) + 𝑑 (𝑔−1(𝑥), ℎ−1 (𝑥)). (2.1)

Theorem 2.3 [1, 29]. Let X be a compact topological manifold of dimension 𝑛 ≥ 2, and let 𝜇 be an
OU measure on X. Then, the set of Devaney-chaotic elements of H(𝑋, 𝜇) is residual (that is, contains
a dense 𝐺 𝛿 set).

The density part of Theorem 2.3 is also a corollary of [3, Lemma 2], which shows how to perturb a
measure-preserving homeomorphism of the cube to one that cyclically permutes arbitrarily small dyadic
cubes (and is therefore chaotic). As mentioned in [3], this can be translated to the setting of compact,
connected manifolds via a modification of a theorem of Brown (see [4, Theorem 9.6]). Moreover,
Theorem 2.3 still holds if condition (3) is strengthened to a truly metric property called ‘maximal’
dependence on initial conditions (see [4, Theorem 4.8]).

2.2. Mixing

Definition 2.4. Let (𝑋, Σ, 𝜇) be a probability space. A 𝜇-preserving measurable map ℎ : 𝑋 → 𝑋 is:
1. antiperiodic if the set of periodic points of h has measure zero;
2. ergodic if, for every 𝐴, 𝐵 ∈ Σ,

lim
𝑛→∞

1
𝑛

𝑛−1∑
𝑘=0

𝜇(ℎ−𝑘 (𝐴) ∩ 𝐵) = 𝜇(𝐴)𝜇(𝐵);

3. weakly mixing if, for every 𝐴, 𝐵 ∈ Σ,

lim
𝑛→∞

1
𝑛

𝑛−1∑
𝑘=0

|𝜇(ℎ−𝑘 (𝐴) ∩ 𝐵) − 𝜇(𝐴)𝜇(𝐵) | = 0;

4. strongly mixing if, for every 𝐴, 𝐵 ∈ Σ,

lim
𝑛→∞

𝜇(ℎ−𝑛 (𝐴) ∩ 𝐵) = 𝜇(𝐴)𝜇(𝐵).
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Remark 2.5.

1. That this formulation of ergodicity is implied by the usual one (invariant sets having trivial measure)
is an application of Birkhoff’s ergodic theorem (see [54, ‘Consequences of ergodicity’]). The other
direction is easily deduced upon taking 𝐴 = 𝐵𝑐 .

2. It is also immediate that strong mixing implies weak mixing, which implies ergodicity, which implies
antiperiodicity. In fact (see [54, ‘Mixing’]), an invertible transformation h is weakly mixing if and
only if ℎ × ℎ is ergodic, which holds if and only if the only eigenvalue of the unitary operator
𝑈ℎ ∈ B(𝐿2 (𝑋, Σ, 𝜇)), 𝑓 ↦→ 𝑓 ◦ ℎ, is 1 with the constants as the only eigenfunctions.

3. If X is a topological space and Σ is its Borel 𝜎-algebra, then a strongly mixing continuous map h is
topologically mixing on the support of 𝜇.

4. If (𝑋, ℎ) is a mixing axiom A diffeomorphism, then the ‘Bowen measure’ is strongly mixing (see,
for example, [12, Theorem 4.1, §1E]).

The measure algebra associated to (𝑋, Σ, 𝜇) is the Boolean algebra 𝔅 consisting of the equivalence
classes of measurable sets (where equivalence of E and F means that their symmetric difference has
measure zero) and equipped with the usual set operations (intersection, union, complementation). If 𝜇
is nonatomic and 𝔅 is separable (with respect to the metric 𝑑 (𝐸, 𝐹) = 𝐸
𝐹), then 𝔅 is isomorphic to
the measure algebra of the unit interval I with Lebesgue measure 𝜆 (see, for example, [10, Theorem
9.3.4]). In this setting, it was shown in [53] (see also [54, ‘Category’]) that, among invertible measure-
preserving transformations of (𝑋, Σ, 𝜇), the weakly mixing ones are generic. This result was later
adapted to topological dynamical systems.

Theorem 2.6 [61]. Let X be a compact, connected topological manifold, and let 𝜇 be an OU measure
on X. Then, the weakly mixing elements of H(𝑋, 𝜇) form a dense 𝐺 𝛿 set.

The conjugacy lemma of [2] (see also [4, Theorem 10.1]), which is a strengthening of the prototypical
result of Halmos, established a very general framework for transferring generic properties of measure-
preserving systems to topological ones. Namely (see [4, Theorem 10.3]), if V is a 𝐺 𝛿 subset of
invertible measure-preserving transformations (with respect to the weak topology) that is invariant
under conjugation and contains an antiperiodic transformation, then V ∩H(𝑋, 𝜇) is a dense 𝐺 𝛿 subset
of H(𝑋, 𝜇) (with respect to the uniform topology). Theorem 2.6 is a special case of this observation.
In §3, we will use classification to lift from topological systems (viewed as actions on trace spaces) to
C∗-algebras.

Various genericity results for noninvertible transformations of ([0, 1], 𝜇), where 𝜇 is an OU measure
on the interval [0, 1], are established in [9]. In particular, the following holds.

Theorem 2.7 [9]. In the set C ([0, 1], 𝜇) of 𝜇-preserving continuous maps [0, 1] → [0, 1], both the
weakly mixing and (maximally) chaotic elements form dense 𝐺 𝛿 sets. The strongly mixing elements are
dense but meagre.

Remark 2.8. Rather than the generic behaviour of ℎ ∈ H(𝑋, 𝜇) (or ℎ ∈ C (𝑋, 𝜇)) for a given 𝜇, one
might ask for the generic behaviour of 𝜇 ∈ M(𝑋)ℎ , that is, of an h-invariant Borel probability measure
𝜇, for a given homeomorphism (or continuous map) h. It is shown in [19] that, for a generic continuous
h on a 𝐶1 compact, connected manifold, ergodic measures are nowhere dense in M(𝑋)ℎ . On the other
hand, for an irreducible diffeomorphism on a compact manifold without boundary, ergodicity is generic
[47, Theorem 7.1]. For a mixing axiom A diffeomorphism, the generic invariant measure is OU [81]
and weakly mixing [82], and the strongly mixing invariant measures are dense [82] but meagre [81].

3. Lifting via classification

The standing assumption in this section is that A is an infinite-dimensional, separable, algebraically
simple C∗-algebra whose tracial state space 𝑇 (𝐴) is nonempty and compact, with compact extreme
boundary 𝜕𝑒 (𝑇 (𝐴)). (In conjunction with Z-stability, these conditions in particular imply that A has
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‘continuous scale’; see, for example, [42, §5].) Throughout, the boundary 𝜕𝑒 (𝑇 (𝐴)) is denoted by 𝑋𝐴 (X
for ‘extreme’). We equip 𝑇 (𝐴) with the 𝑤∗-topology and fix a metric d on 𝑋𝐴 that induces the subspace
topology. The set of continuous affine maps 𝑇 (𝐴) → R is denoted by Aff(𝑇 (𝐴)).

Endomorphism spaces

Let us write End(𝐴, 𝑋𝐴) for the set of what one might call ‘tracially nondegenerate’ endomorphisms of
A, that is, ∗-homomorphisms 𝛼 : 𝐴→ 𝐴 that induce continuous affine maps 𝛼∗ = 𝑇 (𝛼) : 𝑇 (𝐴) → 𝑇 (𝐴)
that preserve 𝑋𝐴 = 𝜕𝑒 (𝑇 (𝐴)). (Note, for example, that the shift endomorphisms of 𝑀𝑛∞ discussed in
§4.4 are not covered by this definition.) For a given 𝜏 ∈ 𝑇 (𝐴), let us write End(𝐴, 𝑋𝐴, 𝜏) for those
elements of End(𝐴, 𝑋𝐴) that fix 𝜏. Note that

Aut(𝐴) ⊆
⋃

𝜏∈𝑇 (𝐴)
End(𝐴, 𝑋𝐴, 𝜏) ⊆ End(𝐴, 𝑋𝐴)

(that is, every automorphism preserves 𝑋𝐴 and fixes some 𝜏). We write Aut(𝐴, 𝜏) for the set Aut(𝐴) ∩
End(𝐴, 𝑋𝐴, 𝜏).

Each of these spaces is equipped with a suitable topology of pointwise convergence. For End(𝐴, 𝑋𝐴)
and End(𝐴, 𝑋𝐴, 𝜏), this means the topology induced by the family of pseudometrics

{𝑑𝐹 (𝛼, 𝛽) = max
𝑎∈𝐹

‖𝛼(𝑎) − 𝛽(𝑎)‖ | 𝐹 ⊆ 𝐴 finite}.

To ensure that Aut(𝐴) and Aut(𝐴, 𝜏) are Polish spaces, we should use the finer topology provided by

{𝑑𝐹 (𝛼, 𝛽) + 𝑑 ′𝐹 (𝛼
−1, 𝛽−1) | 𝐹 ⊆ 𝐴 finite}, (3.1)

where 𝑑 ′𝐹 (𝜑, 𝜓) = inf𝑢 max𝑎∈𝐹 ‖𝑢𝜑(𝑎)𝑢∗ −𝜓(𝑎)‖, the infimum taken over all unitaries in (the minimal
unitisation of) A. (Completeness follows from an approximate intertwining; see, for example, [79,
Corollary 2.3.3].) That said, we will not apply the Baire category theorem directly in Aut(𝐴), instead
lifting generic properties from the trace space to the C∗-algebra via classification.

Representing measures

Since 𝑇 (𝐴) is a Choquet simplex, every 𝜏 ∈ 𝑇 (𝐴) is represented by a unique Borel probability measure
𝜇 = 𝜇𝜏 supported on 𝑋𝐴 = 𝜕𝑒 (𝑇 (𝐴)); that is, 𝜇 is the unique measure on 𝑋𝐴 such that

𝑓 (𝜏) =
∫
𝑋𝐴

𝑓 𝑑𝜇 for every 𝑓 ∈ Aff (𝑇 (𝐴)). (3.2)

(The metric d on 𝑋𝐴 can then be extended to all of 𝑇 (𝐴) via a choice of Wasserstein metric between
representing measures; see [59, §2]).

In fact, every continuous affine functional 𝑓 : 𝑇 (𝐴) → R is of the form 𝑓 = 𝑎̂ for some self-adjoint
element 𝑎 ∈ 𝐴 (see [66, Theorem 9.3], whose use of [28, §2] does not even require simplicity). The
defining property (3.2) of the representing measure 𝜇 is therefore

𝜏(𝑎) =
∫
𝑋𝐴

𝑎̂ 𝑑𝜇 for every 𝑎 ∈ 𝐴𝑠𝑎 . (3.3)

Conversely, every measure 𝜇 defines via equation (3.3) a trace 𝜏 = 𝜏𝜇 ∈ 𝑇 (𝐴). If 𝜇 is an OU measure,
we call 𝜏𝜇 an OU trace.

We use representing measures to reduce the analysis of generic properties of the space
Aff𝑋𝐴 (𝑇 (𝐴), 𝑇 (𝐴)) of continuous 𝑋𝐴-preserving affine maps 𝑇 (𝐴) → 𝑇 (𝐴) to those of 𝐶 (𝑋𝐴, 𝑋𝐴).
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In particular, we can extend ℎ ∈ 𝐶 (𝑋𝐴, 𝑋𝐴) to an element of Aff𝑋𝐴 (𝑇 (𝐴), 𝑇 (𝐴)) via the pushforward

ℎ∗(𝜏) (𝑎) =
∫
𝑋𝐴

𝑎̂ ◦ ℎ 𝑑𝜇𝜏 for every 𝑎 ∈ 𝐴. (3.4)

Lemma 3.1. The pushforward extension ℎ ↦→ ℎ∗ of equation (3.4) gives a homeomorphism between
𝐶 (𝑋𝐴, 𝑋𝐴) and Aff𝑋𝐴 (𝑇 (𝐴), 𝑇 (𝐴)) (with respect to the d-uniform topology).

Proof. The map ℎ ↦→ ℎ∗ is continuous, and its continuous inverse is the restriction map
Aff𝑋𝐴 (𝑇 (𝐴), 𝑇 (𝐴)) → 𝐶 (𝑋𝐴, 𝑋𝐴). �

The map 𝑇 (·) : End(𝐴, 𝑋𝐴) → 𝐶 (𝑋𝐴, 𝑋𝐴), 𝛼 ↦→ 𝛼∗ |𝑋𝐴 , is continuous. It sends End(𝐴, 𝑋𝐴, 𝜏)
to the set C (𝑋𝐴, 𝜇) of 𝜇 = 𝜇𝜏-preserving continuous maps 𝑋𝐴 → 𝑋𝐴 and Aut(𝐴, 𝜏) to H(𝑋𝐴, 𝜇)
(continuously with respect to equations (2.1) and (3.1)). The following is immediate.

Lemma 3.2. If V is an open (respectively, 𝐺 𝛿) subset of C (𝑋𝐴, 𝜇), then 𝑇−1V is an open (respectively,
𝐺 𝛿) subset of End(𝐴, 𝑋𝐴, 𝜏𝜇) that is invariant under approximate unitary equivalence. The same is true
of 𝑇−1V ∩ Aut(𝐴) ⊆ Aut(𝐴, 𝜏𝜇) for V ⊆ H(𝑋𝐴, 𝜇).

If we further demand that A be classifiable by the Elliott invariant and impose suitable restrictions
on K-theory and traces, we can also lift dense sets to dense sets.

First, we recall some notation. Every 𝜏 ∈ 𝑇 (𝐴) extends to a tracial state on the minimal unitisation 𝐴̃
of A via 𝑎+𝜆1 ↦→ 𝜏(𝑎) +𝜆 and also to a trace 𝜏⊗ tr𝑘 on any matrix algebra 𝐴⊗𝑀𝑘 � 𝑀𝑘 (𝐴) over A. We
denote these extensions also by 𝜏. For a unital C∗-algebra A, the pairing map 𝜌𝐴 : 𝐾0(𝐴) → Aff (𝑇 (𝐴))
is the homomorphism defined by 𝜌𝐴([𝑝]) (𝜏) = 𝜏(𝑝) for 𝑝 ∈ 𝑀𝑘 (𝐴) a projection.

If A is nonunital, then 𝐾0(𝐴) is the kernel of the map 𝐾0( 𝐴̃) → 𝐾0(C) induced by the quotient
map Π𝐴 : 𝐴̃ → C, and the pairing is defined by 𝜌𝐴([𝑝] − [𝑞]) (𝜏) = 𝜏(𝑝) − 𝜏(𝑞). Moreover, 𝑇 ( 𝐴̃) is
affinely homeomorphic to the convex hull of 𝑇 (𝐴) and the trace 𝜏C induced by Π𝐴; in particular, every
continuous affine map from 𝑇 (𝐴) to itself extends uniquely to one from 𝑇 ( 𝐴̃) to itself that fixes 𝜏C.

Definition 3.3. A C∗-algebra A is said to have trivial tracial pairing if either

1. A is unital and the image of 𝜌𝐴 : 𝐾0(𝐴) → Aff (𝑇 (𝐴)) is contained in the constant functions, or
2. A is nonunital and ker 𝜌𝐴 = 𝐾0(𝐴).

Note that a simple C∗-algebra A must in fact be stably projectionless if ker 𝜌𝐴 = 𝐾0(𝐴). This condition
holds, for example, for the C∗-algebras classified in [48]. Examples of unital C∗-algebras with trivial
tracial pairing are limits of subhomogeneous building blocks with connected spectra (in particular, the
interval algebras 𝐶 ([0, 1], 𝑀𝑛) considered in [85] and the prime dimension drop algebras considered
in [60]).

Theorem 3.4. Suppose that, in addition to the standing assumption of this section, A also satisfies the
UCT and has finite nuclear dimension, trivial tracial pairing and torsion-free 𝐾1. Then, for every dense
subset V of C (𝑋𝐴, 𝜇), 𝑇−1V is a dense subset of End(𝐴, 𝑋𝐴, 𝜏𝜇). The same is true of 𝑇−1V ∩ Aut(𝐴) ⊆
Aut(𝐴, 𝜏𝜇) for V ⊆ H(𝑋𝐴, 𝜇).

Proof. We will prove the statement for automorphisms, noting that the same argument works for
endomorphisms. Let 𝛼 ∈ Aut(𝐴) with 𝑇 (𝛼) ∈ H(𝑋𝐴, 𝜇) (that is, 𝜏𝜇 ◦ 𝛼 = 𝜏𝜇). Let 𝐹 ⊆ 𝐴 be finite, and
let 𝜀 > 0. We must show that there is an automorphism 𝛽 of A and a unitary w such that 𝑇 (𝛽) ∈ V ,

max
𝑎∈𝐹

‖𝛽(𝑎) − 𝛼(𝑎)‖ < 𝜀 (3.5)

and

max
𝑎∈𝐹

‖𝛽−1 (𝑎) − 𝑤𝛼−1(𝑎)𝑤∗‖ < 𝜀. (3.6)
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To do this, we use the fact that under our hypotheses (see [52, 48, 16]) there is an invariant Inv based
on K-theory and traces that classifies morphisms (that is, tracially nondegenerate ∗-homomorphisms)
𝐴→ 𝐴, meaning:

(existence) every morphism Inv(𝐴) → Inv(𝐴) can be lifted to a morphism 𝐴→ 𝐴;
(uniqueness) for every morphism 𝜑 : 𝐴→ 𝐴 and F, 𝜀 as above, there is 𝛿 > 0 such that, if 𝜓 : 𝐴→ 𝐴
is a morphism for which Inv(𝜓) 𝛿-agrees with Inv(𝜑) (made precise below), then there is a unitary
u in the minimal unitisation 𝐴̃ of A with max𝑎∈𝐹 ‖𝑢𝜓(𝑎)𝑢∗ − 𝜑(𝑎)‖ < 𝜀.

Given such an invariant, the strategy is to:

1. perturb Inv(𝛼) by keeping its K-theory part the same but replacing its tracial part 𝑇 (𝛼) by a nearby
ℎ ∈ V;

2. use (existence) to lift this perturbed Inv-morphism to a morphism 𝛼ℎ : 𝐴→ 𝐴;
3. use (uniqueness) to deduce equations (3.5) and (3.6) for a unitary conjugate 𝛽 of 𝛼ℎ .

For this to work, we must know that the perturbation in Step 1 still gives a valid Inv-morphism. This is
where assuming something like trivial tracial pairing becomes essential and where we must pay close
attention to the actual structure of Inv. Finally, then, here are its components:

Traces. Like the Elliott invariant, Inv includes the trace functor 𝑇 (·) (or, dually, Aff (𝑇 (·))).
Total K-theory. Inv includes not just the usual K-groups 𝐾∗(𝐴), but K-theory with coefficients
𝐾 (𝐴) =

⊕∞
𝑛=0 𝐾∗(𝐴;Z/𝑛). By the universal multicoefficient theorem for separable C∗-algebras

satisfying the UCT (see [30, §1.4]), the group of homomorphisms 𝐾 (𝐴) → 𝐾 (𝐴) that respect the
‘Bockstein operations’ is isomorphic to the group 𝐾𝐿(𝐴, 𝐴) (see [79, 2.4.8]). For 𝜅 ∈ 𝐾𝐿(𝐴, 𝐴) and
𝑖 = 0, 1, we write 𝜅𝑖 for associated homomorphism 𝐾𝑖 (𝐴) → 𝐾𝑖 (𝐴).
Hausdorffised algebraic 𝑲1. Let 𝐶𝑈 ( 𝐴̃) denote the closure of the commutator subgroup of the
unitary group 𝑈 ( 𝐴̃) of 𝐴̃. Write 𝐾1

𝑎𝑙𝑔 (𝐴) := 𝑈 ( 𝐴̃)/𝐶𝑈 ( 𝐴̃). The C∗-algebras we consider here are
all of stable rank one (see [78, Theorem 6.7] and [45, Corollary 6.8]), so we are justified in making
this definition without passing to matrix algebras over A. Moreover, as in [71, Lemma 3.1] we have
a short exact sequence

0 Aff (𝑇 ( 𝐴̃))/𝜌𝐴(𝐾0( 𝐴̃)) 𝐾1
𝑎𝑙𝑔 (𝐴) 𝐾1(𝐴) 0.𝜆𝐴 𝜋𝐴 (3.7)

Here, 𝜋𝐴 is the canonical surjection 𝜋𝐴([𝑢]𝑎𝑙𝑔) = [𝑢]1. By divisibility of the group
Aff (𝑇 ( 𝐴̃))/𝜌𝐴(𝐾0( 𝐴̃)), the sequence (3.7) splits (unnaturally). We fix a splitting map 𝑠𝐴 : 𝐾1(𝐴) →
𝐾1

𝑎𝑙𝑔 (𝐴) that is a right inverse of 𝜋𝐴.
The inclusion 𝜆𝐴 is the inverse of the map 𝑈0 ( 𝐴̃)/𝐶𝑈 ( 𝐴̃) → Aff (𝑇 ( 𝐴̃))/𝜌𝐴(𝐾0( 𝐴̃)) induced

by the de la Harpe–Skandalis determinant (see [86, §3], and note that stable rank one ensures that
𝐶𝑈 ( 𝐴̃) is contained in the connected component 𝑈0 ( 𝐴̃) of 𝑈 ( 𝐴̃)). It is an isometry with respect
to the quotient metric on 𝑈0 ( 𝐴̃)/𝐶𝑈 ( 𝐴̃) and the metric 𝑑𝐴 on Aff (𝑇 ( 𝐴̃))/𝜌𝐴(𝐾0 ( 𝐴̃)) obtained by
adjusting the quotient metric 𝑑 ′𝐴 to

𝑑𝐴( 𝑓 , 𝑔) =
{��𝑒2𝜋𝑖𝑑′𝐴 ( 𝑓 ,𝑔) − 1

�� if 𝑑 ′𝐴( 𝑓 , 𝑔) <
1
2

2 if 𝑑 ′𝐴( 𝑓 , 𝑔) ≥
1
2 .

(3.8)

An Inv-morphism consists of: an element 𝜅 ∈ 𝐾𝐿(𝐴, 𝐴) (which if A is unital is required to satisfy
𝜅0 ([1𝐴]0) = [1𝐴]0); a continuous affine map 𝜅𝑇 : 𝑇 (𝐴) → 𝑇 (𝐴) (inducing a positive unital linear map
𝜅∗𝑇 : Aff(𝑇 ( 𝐴̃)) → Aff (𝑇 ( 𝐴̃))) that is compatible with 𝜅 in the sense that 𝜌𝐴 ◦ 𝜅0 = 𝜅∗𝑇 ◦ 𝜌𝐴 (therefore
inducing an endomorphism 𝜅𝑇 of Aff (𝑇 ( 𝐴̃))/𝜌𝐴(𝐾0( 𝐴̃))); and a homomorphism 𝜅𝑈 : 𝐾1

𝑎𝑙𝑔 (𝐴) →
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𝐾1
𝑎𝑙𝑔 (𝐴) that is compatible with 𝜅𝑇 in the sense that the diagram

𝐾0( 𝐴̃) Aff(𝑇 ( 𝐴̃)) 𝐾1
𝑎𝑙𝑔 (𝐴) 𝐾1(𝐴)

𝐾0( 𝐴̃) Aff(𝑇 ( 𝐴̃)) 𝐾1
𝑎𝑙𝑔 (𝐴) 𝐾1(𝐴)

𝜌𝐴

𝜅0

𝜆𝐴

𝜅∗𝑇

𝜋𝐴

𝜅𝑈 𝜅1

𝜌𝐴 𝜆𝐴 𝜋𝐴

(3.9)

commutes. (Importantly, the necessity of another family of commutative diagrams between 𝐾0 with
coefficients and 𝐾1

𝑎𝑙𝑔 (𝐴) is identified in [16]. There it is also shown that this additional compatibility
is automatic if 𝐾1(𝐴) is torsion free.)

That Inv satisfies (existence) is provided by [52, Corollary 5.13] (see also [16]), or in the stably
projectionless case, [48, Theorem 12.8] (noting in this latter case that 𝐴 ∈ D0 by [48, Theorem 15.2]
and the proof of [48, Theorem 15.5] and that by [48, Theorem 13.1], the models 𝐵𝑇 constructed in [48,
§7] cover the full class D0; in other words, the hypotheses of [48, Theorem 12.8] hold for 𝐵𝑇 = 𝐴).

We use (existence) as follows: For any ℎ ∈ 𝐶 (𝑋𝐴, 𝑋𝐴) (which we extend by Lemma 3.1 to
Aff𝑋𝐴 (𝑇 (𝐴), 𝑇 (𝐴))), there exists 𝛼ℎ ∈ End(𝐴, 𝑋𝐴) (which by [51, Theorem 29.5], or in the stably
projectionless case, [48, Theorem 13.1], is an automorphism if h is invertible) with 𝜅𝑇 := 𝑇 (𝛼ℎ) = ℎ,
𝜅 := 𝐾𝐿(𝛼ℎ) = 𝐾𝐿(𝛼) and 𝜅𝑈 := 𝐾1

𝑎𝑙𝑔 (𝛼ℎ) defined by 𝜅𝑈 ◦ 𝜆𝐴 = 𝜆𝐴 ◦ 𝜅∗𝑇 and 𝜅𝑈 ◦ 𝑠𝐴 =

𝐾1
𝑎𝑙𝑔 (𝛼) ◦ 𝑠𝐴 : 𝐾1(𝐴) → 𝐾1

𝑎𝑙𝑔 (𝐴). Note that these choices do provide a valid Inv-morphism: The
middle square of equation (3.9) commutes by construction, the right square commutes because it does
for Inv(𝛼) and the left square commutes because A has trivial tracial pairing.

For (uniqueness), we appeal to the approximate version of [52, Theorem 4.3] (see also [16], which
includes a classification of ∗-homomorphisms into sequence algebras), or in the stably projectionless
case, [48, Theorem 5.3] (again noting that our assumptions on A ensure that the hypotheses of this
theorem are indeed satisfied for 𝐵 = 𝐴: by [48, Remark 3.11], 𝐴 ∈ D0 ⊆ D𝑑; the map T : N × N→ N
can be taken to be (𝑛, 𝑘) ↦→ 𝑛 (cf. [48, 5.2]); and the fullness condition can be dropped since we work
only with tracially nondegenerate genuine ∗-homomorphisms rather than more general approximately
multiplicative maps (cf. [48, Remark 5.6])).

By commutativity of equation (3.9) and the fact that (the inverse of) 𝜆𝐴 is an isometry (with respect
to the quotient metric on 𝐾1

𝑎𝑙𝑔 (𝐴) and the metric 𝑑𝐴 of equation (3.8)), we can phrase (uniqueness)
as follows: For our fixed finite set 𝐹 ⊆ 𝐴 and tolerance 𝜀 > 0, there is 𝛿 > 0 such that, if

sup
𝑥∈𝑋𝐴

(ℎ(𝑥), 𝑇 (𝛼) (𝑥)) < 𝛿, (3.10)

then there is a unitary u such that equation (3.5) holds for 𝛽 := 𝑢𝛼ℎ (·)𝑢∗, and if moreover

sup
𝑥∈𝑋𝐴

(ℎ−1 (𝑥), 𝑇 (𝛼)−1(𝑥)) < 𝛿, (3.11)

then equation (3.6) also holds for some unitary w. By density of V , there exists ℎ ∈ V such that equations
(3.10) and (3.11) hold, so we are done. �

Combining Lemma 3.2, Theorem 3.4, Theorem 2.3, Theorem 2.6 and Theorem 2.7, we immediately
have the following.

Theorem 3.5. Let A be an infinite-dimensional, separable, algebraically simple C∗-algebra that satisfies
the UCT, has finite nuclear dimension, trivial tracial pairing and torsion-free 𝐾1 and whose tracial
state space 𝑇 (𝐴) is nonempty and compact, with compact extreme boundary 𝑋𝐴 = 𝜕𝑒 (𝑇 (𝐴)) that has
the structure of a topological manifold of dimension 𝑛 ≥ 2. Let 𝜇 be an OU measure on 𝑋𝐴, and let
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𝜏 = 𝜏𝜇 be the corresponding element of 𝑇 (𝐴). Then,

{𝛼 ∈ Aut(𝐴, 𝜏) | 𝑇 (𝛼) ∈ H(𝑋𝐴, 𝜇) is weakly mixing and chaotic}

is a residual subset of Aut(𝐴, 𝜏) (that is, contains a dense 𝐺 𝛿 set). If 𝑋𝐴 = [0, 1], then

{𝛼 ∈ End(𝐴, 𝑋𝐴, 𝜏) | 𝑇 (𝛼) ∈ C (𝑋𝐴, 𝜇) is weakly mixing and chaotic}

is a residual subset of End(𝐴, 𝑋𝐴, 𝜏), and

{𝛼 ∈ End(𝐴, 𝑋𝐴, 𝜏) | 𝑇 (𝛼) ∈ C (𝑋𝐴, 𝜇) is strongly mixing}

is a dense but meagre subset of End(𝐴, 𝑋𝐴, 𝜏).

Remark 3.6.
1. Torsion-free 𝐾1 can be replaced by one of the other conditions in [52, Corollary 5.13] (for example,

tracial rank ≤ 1) and in fact by results of the forthcoming work [16] can be removed as an assumption
altogether. (Briefly, the map 𝐾1

𝑎𝑙𝑔 (𝛼ℎ) constructed in the proof of Theorem 3.4 can be adjusted
without changing 𝑇 (𝛼ℎ) so that equation (3.9) still commutes, and so do the additional compatibility
diagrams mentioned in the proof.) On the other hand, triviality of the tracial pairing is used rather
crucially.

2. Suppose that A is unital with 𝑋𝐴 = 𝜕𝑒 (𝑇 (𝐴)) nonempty. Then, 𝜕𝑒 (𝑇 (
⊗

𝑛∈Z 𝐴)) �
∏

𝑛∈Z 𝑋𝐴 (see [11,
Proposition 3.5]). The (right) shift automorphism of

⊗
𝑛∈Z 𝐴 induces the (left) shift on

∏
𝑛∈Z 𝑋𝐴,

which is strongly mixing with respect to
⊗

𝑛∈Z 𝜇, for any Borel probability measure 𝜇 on 𝑋𝐴. This
demonstrates the existence of automorphisms with strongly mixing actions on trace spaces for a
collection of C∗-algebras B with 𝜕𝑒 (𝑇 (𝐵)) a Cantor space or Hilbert cube.

3. In [85, §4], Thomsen shows how to construct an approximately interval (AI) algebra that admits
tracially chaotic endomorphisms. By Theorem 3.5, these endomorphisms are in fact typical for this
algebra.

4. Strongly chaotic dynamics

In this section, we describe some well-known examples of ergodic topological dynamical systems
(𝑋, 𝜇, ℎ) on compact metric spaces with striking statistical properties. We then construct model C∗-
algebras admitting endomorphisms that exhibit these phenomena.

4.1. Statistical features

It is straightforward to check that strong mixing is equivalent to

lim
𝑛→∞

∫
𝑋
( 𝑓 ◦ ℎ𝑛)𝑔 𝑑𝜇 =

∫
𝑋
𝑓 𝑑𝜇 ·

∫
𝑋
𝑔 𝑑𝜇 (4.1)

for every 𝑓 , 𝑔 ∈ 𝐿2 (𝑋, 𝜇). It is sufficient to consider only observables that are continuous and in fact
sufficient to verify equation (4.1) for observables 𝑓 = 𝑔.

We will write Höl𝜂 (𝑋) for the set of Hölder continuous functions 𝑓 : 𝑋 → R with exponent 𝜂 > 0,
that is,

Höl𝜂 (𝑋) = { 𝑓 : 𝑋 → R | ∃𝐶 > 0 ∀𝑥, 𝑦 ∈ 𝑋 (| 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐶𝑑 (𝑥, 𝑦)𝜂)}.

Definition 4.1. The system (𝑋, 𝜇, ℎ) has exponential decay of correlations (EDC) (for Hölder
continuous observables) if for every 𝜂 > 0 there exists 𝛾 ∈ (0, 1) such that for every 𝑓 , 𝑔 ∈ Höl𝜂 (𝑋)
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there exists 𝐶 > 0 such that for every 𝑛 ∈ N,����∫
𝑋
( 𝑓 ◦ ℎ𝑛)𝑔 𝑑𝜇 −

∫
𝑋
𝑓 𝑑𝜇 ·

∫
𝑋
𝑔 𝑑𝜇

���� ≤ 𝐶𝛾𝑛.
The central limit theorem (CLT) is closely related to exponential mixing. For instance, for the

dispersing billiards described in §4.2 below, the CLT can be deduced from correlation bounds (see
[24]). Given an observable 𝑓 : 𝑋 → R, we write 𝑆𝑛 𝑓 for the ergodic sum

∑𝑛−1
𝑘=0 𝑓 ◦ ℎ𝑘 .

Definition 4.2. The system (𝑋, 𝜇, ℎ) satisfies the CLT (for Hölder continuous observables) if for every
𝜂 > 0 and every 𝑓 ∈ Höl𝜂 (𝑋) that is not a coboundary and satisfies

∫
𝑋
𝑓 𝑑𝜇 = 0, there exists 𝜎 𝑓 > 0

such that the sequence of random variables 1√
𝑛
𝑆𝑛 𝑓 converges in distribution as 𝑛 → ∞ to the normal

distribution N (0, 𝜎2
𝑓 ). In other words, for every 𝑧 ∈ R,

lim
𝑛→∞

𝜇

({
𝑥 ∈ 𝑋 | 𝑆𝑛 𝑓 (𝑥)√

𝑛
≤ 𝑧

})
=

1
𝜎 𝑓

√
2𝜋

∫ 𝑧

−∞
exp

(
− 𝑡2

2𝜎2
𝑓

)
𝑑𝑡. (4.2)

Here, the variance 𝜎2
𝑓 can be computed as 𝜎2

𝑓 = lim𝑛→∞
1
𝑛

∫
𝑋
(𝑆𝑛 𝑓 )2𝑑𝜇. For coboundaries, that is,

functions f for which 𝑓 = 𝑔 ◦ ℎ − 𝑔 for some 𝑔 ∈ 𝐿2 (𝑋, 𝜇), the variance is 0 and equation (4.2) holds
provided the right-hand side is interpreted as the Heaviside function (that is, 𝑆𝑛 𝑓√

𝑛
converges almost

surely to 0).
The CLT provides considerably more information than Birkhoff’s ergodic theorem, which for ergodic

h says that, for every integrable f and almost every x, lim𝑛→∞
1
𝑛𝑆𝑛 𝑓 (𝑥) =

∫
𝑋
𝑓 𝑑𝜇. That said, in the

compact, uniquely ergodic setting, the following finite-time estimate of large deviation from the mean
is available even if the CLT is not.

Proposition 4.3 [7]. Suppose that X is a compact metric space and (𝑋, 𝜇, ℎ) is uniquely ergodic (that
is, 𝜇 is the unique invariant measure of h). Then, for every 𝜀 > 0 and every 𝑘 ∈ N, there exist constants
𝑐1, 𝑐2 > 0 such that, for every k-Lipschitz 𝑓 : 𝑋 → R and every 𝑛 ∈ N,

𝜇

({
𝑥 ∈ 𝑋 |

����1𝑛 𝑆𝑛 𝑓 (𝑥) −
∫
𝑋
𝑓 𝑑𝜇

���� > 𝜀}) ≤ 𝑐1𝑒
−𝑐2𝑛𝜀

2
.

Actually, Proposition 4.3 holds for arbitrary continuous observables, not just Lipschitz ones, but in
general the constants 𝑐1 and 𝑐2 will depend on f (see [7, Proposition 3.1]). On the other hand, for systems
like axiom A diffeomorphisms (see [20, §5]) and holomorphic endomorphisms of projective space (with
𝑛𝜀2 replaced by 𝑛(log 𝑛)−2𝑝(𝜀) for a suitable function p; see [34]), the constants do not depend on 𝜀.

4.2. Examples

For the convenience of those not overly familiar with the statistics of dynamical systems, we present
several well-known examples where the features described in §4.1 can be observed. The reader should
bear these examples in mind as candidate tracial dynamical systems to which Theorem 4.4 and Theorem
4.9 can be applied (provided that the space X is connected and the map ℎ : 𝑋 → 𝑋 is continuous).

Subshifts of finite type
Suppose that A is a 0-1 matrix which is mixing (that is, for some 𝑀 ∈ N, all of the entries of 𝐴𝑀

are nonzero), ℎ : Σ𝐴 → Σ𝐴 is the associated subshift of finite type and 𝜇 = 𝜇𝜑 is the Gibbs measure
associated to some potential 𝜑. Then, the CLT and EDC hold [12, §1E]. Using Markov partitions [12,
§3C] to construct symbolic dynamics [12, §3D], one sees that they also hold for mixing axiom A
diffeomorphisms [12, Theorem 4.1].
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Expanding circle maps
These types of dynamical systems are used to model the ‘intermittency’ of turbulent flows, which
transition between periodic and chaotic behaviour (see [75]). Here is one example (see [68] and [20,
§3.5]). Let 𝛼 ∈ (0, 1/2), and define ℎ : [0, 1] → [0, 1] by

ℎ(𝑡) =
{
𝑡 + 2𝛼𝑡1+𝛼 if 0 ≤ 𝑡 < 1

2
2𝑡 − 1 if 1

2 ≤ 𝑡 ≤ 1.

Identifying the boundary points of [0, 1], we view this as a continuous map 𝑆1 → 𝑆1. There is a unique
ergodic invariant probability measure 𝜇 that is equivalent to Lebesgue measure. The dynamical system
(𝑆1, 𝜇, ℎ) has polynomial (rather than exponential) mixing rates but still satisfies the CLT [96, Theorem
6]. Moreover, the almost-sure CLT holds for any Lipschitz observable 𝑓 : 𝑆1 → R (see [20, Theorem
18]): If

∫
𝑓 𝑑𝜇 = 0 and f is not a coboundary (so that the variance 𝜎2

𝑓 of f is nonzero), then for 𝜇-a.e.
𝑡 ∈ 𝑆1, the sequence of weighted averages 1

𝐷𝑛

∑𝑛
𝑘=1

1
𝑘 𝛿𝑆𝑘 𝑓 (𝑡)/

√
𝑘 , where 𝛿𝑥 denotes the point mass at x

and 𝐷𝑛 =
∑𝑛

𝑘=1
1
𝑘 , is 𝑤∗-convergent to N (0, 𝜎2

𝑓 ).
For 𝛼 = 1/2, the normalising factor

√
𝑛 in equation (4.2) must be replaced by

√
𝑛 log 𝑛, and for pa-

rameters 𝛼 ∈ (1/2, 1), there is convergence to a suitable non-Gaussian ‘stable law’; see [20, Theorem 9].

Billiards
A billiard table is a closed connected domain Q in the plane R2 or the torus T2 whose boundary 𝜕𝑄
consists of finitely many simple 𝐶3 curves that meet each other only at their ends. The billiard on Q is
the dynamical system in the unit tangent bundle M of the ambient manifold restricted to Q generated by
the unit-speed motion of a tangent vector along a geodesic, whose interaction with 𝜕𝑄 is governed by
the ‘angle of incidence equals angle of reflection’ rule. Billiards are analysed via the discrete dynamical
system (𝑋, ℎ, 𝜇), where 𝑋 = 𝜕𝑄 × [− 𝜋

2 ,
𝜋
2 ] (parameterised by (𝑟, 𝜑), where r is arc length along 𝜕𝑄

and 𝜑 is the angle of incidence relative to an inward-facing normal), ℎ : 𝑋 → 𝑋 is the collision map and
𝜇 is normalised Liouville measure 𝜇 = 𝑐 cos 𝜑𝑑𝑟𝑑𝜑. The behaviour of the system depends on the shape
of the boundary. Dispersing billiards (for example, the periodic Lorentz gas), that is, those with convex
boundary curves, admit the CLT and EDC (see [15, 23, 24]). Certain billiards called Bunimovich stadia
[14] whose boundaries consist only of focusing (concave) and neutral (rectilinear) components satisfy
the CLT [5] (in some cases requiring

√
𝑛 to be replaced by

√
𝑛 log 𝑛) but have polynomial mixing rates

[25]. In both cases, the almost-sure CLT is also observed to hold (see, for example, [21] or [64] for
dispersing billiards and [22] for stadia).

Unfortunately, the map h will always have discontinuities (where boundary curves intersect nons-
moothly but also at instances of ‘grazing’ collisions), so it does not seem that billiards are immediately
suitable for C∗-dynamics. However, they can be modelled via certain countable Markov partitions called
‘Young towers’ [95], so while not covered by the constructions of §4.3, they could be represented as
actions on zero-dimensional spaces.

Complex dynamics
The CLT and EDC are exhibited by many complex-geometric dynamical systems (𝑋, 𝜇, ℎ), with 𝜇
the measure of maximal entropy, such as: holomorphic endomorphisms of projective space [39, 34],
holomorphic automorphisms of positive entropy on compact Kähler surfaces [35] (at least EDC) and
meromorphic automorphisms of the Riemann sphere [32] (with X the Julia set of h; note that in some
cases, the Julia set is known to be connected [58, 73] or even the whole Riemann sphere [57]).

4.3. Model building

Finally in this section, we show how to construct C∗-models that witness prescribed topological dynam-
ical systems at the level of the trace space.
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Theorem 4.4. Let (𝑋, 𝑑) be a compact, connected Riemannian manifold. Then, there exists a separable,
simple, unital, nuclear,Z-stable, projectionless C∗-algebra A that has trivial tracial pairing and satisfies
the UCT such that 𝜕𝑒 (𝑇 (𝐴)) � 𝑋 and {𝑎 | 𝑎̂ ∈ Lip(𝑋, 𝑑)} is dense in 𝐴𝑠𝑎.

Proof. The construction is based on that of [59, §4.4], with dimension drop algebras (over the interval)
replaced by generalised dimension drop algebras (over X), in the sense of [88, 67]. Specifically, fix
𝑥0, 𝑥1 ∈ 𝑋 with 𝑑 (𝑥0, 𝑥1) = diam 𝑋 and for coprime 𝑝, 𝑞 ∈ N define

𝑋𝑝,𝑞 = { 𝑓 ∈ 𝐶 (𝑋, 𝑀𝑝 ⊗ 𝑀𝑞) | 𝑓 (𝑥0) ∈ 𝑀𝑝 ⊗ 1𝑞 , 𝑓 (𝑥1) ∈ 1𝑝 ⊗ 𝑀𝑞}.

The C∗-algebra 𝑋𝑝,𝑞 has the following properties. First, since p and q are coprime, 𝑋𝑝,𝑞 has no
nontrivial projections. Next, each trace on 𝑋𝑝,𝑞 corresponds to some Borel probability measure on X,
and 𝜕𝑒 (𝑇 (𝑋𝑝,𝑞)) � 𝑋 via point evaluations. Since X is connected, this means that 𝑓 ∈ Aff (𝑇 (𝑋𝑝,𝑞))
is constant for any projection 𝑓 ∈ 𝑋𝑝,𝑞 , which in turn means that 𝑋𝑝,𝑞 has trivial tracial pairing.
Nuclearity and the UCT hold for 𝑋𝑝,𝑞 since it is a type I C∗-algebra (see [8, 15.8.2, 22.3.5]). Finally,
by a suitable interpretation of Stone–Weierstrass (see, for example, [76]), the Lipschitz elements { 𝑓 ∈
𝑋𝑝,𝑞 | ∃𝐾 ∀𝑥, 𝑦 ∈ 𝑋 (‖ 𝑓 (𝑥) − 𝑓 (𝑦)‖ ≤ 𝐾𝑑 (𝑥, 𝑦))} are dense in 𝑋𝑝,𝑞 .

Let (𝑦𝑚)𝑚∈N be a dense sequence in X. We claim that, for each m, there exists a bi-Lipschitz path
𝛾𝑚 : [0, 1] ↩→ 𝑋 from 𝑥0 to 𝑥1 such that, for some 𝑡𝑚 ∈ [0, 1], 𝑧𝑚 := 𝛾𝑚 (𝑡𝑚) satisfies 𝑑 (𝑦𝑚, 𝑧𝑚) < 1

𝑚 .
To see this, first note that, by the Hopf–Rinow theorem (see [36, §5.3]), any two points in X can be
joined by a length-minimising geodesic, which (when parameterised by arc length) is in the notation
of [38, §2] a ‘(1, 0)-quasi-geodesic’. Assume that 𝑦𝑚 ∉ {𝑥0, 𝑥1}, let 𝔭0 : 𝐼 → 𝑋 be a geodesic from
𝑥0 to 𝑦𝑚 and 𝔭1 : 𝐽 → 𝑋 a geodesic from 𝑦𝑚 to 𝑥1. If necessary, the path 𝔭1 can be modified near
to 𝑌 := 𝔭0 (𝐼) so that the concatenation 𝔭 of 𝔭0 and 𝔭1 is simple and piecewise bi-Lipschitz. (In a
small tubular neighbourhood of Y (which is diffeomorphic, hence locally Lipschitz equivalent, hence
by compactness globally Lipschitz equivalent, to a convex neighbourhood of the normal bundle of Y in
X) cut out any intermediate points of intersection of 𝔭0 and 𝔭1 by going over or around Y via piecewise
linear paths in the normal bundle. If dim 𝑋 = 1, then no modification is needed; if dim 𝑋 ≥ 3, there are
sufficient dimensions to go up and over Y; if dim 𝑋 = 2, we may assume that the geodesic 𝔭0 is defined
on a larger interval 𝐼 ′ ⊇ 𝐼 to give enough room to go around Y at its endpoints.) Applying [38, Lemma
2.5] to 𝔭 yields a simple bi-Lipschitz path 𝔭′ from 𝑥0 to 𝑥1 at Hausdorff distance less than 1

𝑚 from 𝔭
(so, in particular, there is some point 𝑧𝑚 on the path with 𝑑 (𝑧𝑚, 𝑦𝑚) < 1

𝑚 ). We take this path 𝔭′ as 𝛾𝑚
(suitably reparameterised so that its domain is [0, 1]).

By [69, Theorem 2.4], for each m there exists 𝐾𝑚 > 0 and a 𝐾𝑚-Lipschitz map 𝑒𝑚 : 𝑋 → Γ𝑚 =
𝛾𝑚 ([0, 1]) such that 𝑒𝑚(𝑥0) = 𝑧𝑚 and 𝑒𝑚(𝑥1) = 𝑥1 (that is, we extend the Lipschitz function 𝛾𝑚 ◦
max{𝑡𝑚, id} ◦ 𝛾−1

𝑚 : Γ𝑚 → Γ𝑚 to X).
Now, we build an inductive limit lim−−→(𝑋𝑝𝑚 ,𝑞𝑚 , 𝜑𝑚), with each connecting map 𝜑𝑚 of the form

𝜑𝑚 ( 𝑓 ) = Ad𝑢 ◦ diag( 𝑓 ◦ 𝜉1, . . . , 𝑓 ◦ 𝜉𝑁𝑚) for some maps 𝜉𝑖 : 𝑋 → 𝑋 , most of which are in fact the
identity (to get the right trace space in the limit) and very few of which are not 1-Lipschitz (so that
Lipschitz elements in finite stages map to Lipschitz elements in the limit). To accomplish this, let
(𝑝𝑚, 𝑞𝑚)𝑚∈N be the sequence of coprime positive integers constructed as in [59, §4.4], ensuring that

the numbers 𝑁𝑚 = 𝑝𝑚+1𝑞𝑚+1
𝑝𝑚𝑞𝑚

satisfy 𝑞𝑚+1
𝑁𝑚

< 1
𝑚2 (for tracial control) and 𝑞𝑚+1

𝑁𝑚
< 𝑒

1
𝑚2 −1
𝐾𝑚

(for Lipschitz
control). We define the functions 𝜉𝑖 : 𝑋 → 𝑋 , 1 ≤ 𝑖 ≤ 𝑁𝑚, by

𝜉𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
id𝑋 if 1 ≤ 𝑖 ≤ 𝑁𝑚 − 𝑞𝑚+1

𝑧𝑚 if 𝑁𝑚 − 𝑞𝑚+1 < 𝑖 ≤ 𝑁𝑚 − 𝑞𝑚+1 + 𝑝𝑚+1

𝑒𝑚 if 𝑁𝑚 − 𝑞𝑚+1 + 𝑝𝑚+1 < 𝑖 ≤ 𝑁𝑚.

Then, there are unitaries 𝑢0, 𝑢1 ∈ 𝑀𝑝𝑚+1 ⊗ 𝑀𝑞𝑚+1 (which can be connected via 𝑢 : 𝑋 → Γ𝑚 →
[0, 1] → U (𝑀𝑝𝑚+1 ⊗𝑀𝑞𝑚+1 ) similar to above) such that 𝑢0 diag( 𝑓 ◦𝜉1, . . . , 𝑓 ◦𝜉𝑁𝑚 )𝑢∗0 ∈ 𝑀𝑝𝑚+1 ⊗1𝑞𝑚+1

and 𝑢1 diag( 𝑓 ◦ 𝜉1, . . . , 𝑓 ◦ 𝜉𝑁𝑚)𝑢∗1 ∈ 1𝑝𝑚+1 ⊗ 𝑀𝑞𝑚+1 . This allows us to define the connecting map
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𝜑𝑚 : 𝑋𝑝𝑚 ,𝑞𝑚 → 𝑋𝑝𝑚+1 ,𝑞𝑚+1 by 𝜑𝑚( 𝑓 ) = Ad𝑢 ◦ diag( 𝑓 ◦ 𝜉1, . . . , 𝑓 ◦ 𝜉𝑁𝑚 ).
By construction, 𝐴 = Z ⊗ lim−−→(𝑋𝑝𝑚 ,𝑞𝑚 , 𝜑𝑚) has the desired properties. (In fact, if X has finite

covering dimension, then by [91, Theorem 1.6] and [92], Z-stability is automatic.) In particular, A is
simple (by density of (𝑧𝑚)𝑚∈N ⊆ 𝑋), 𝜕𝑒 (𝑇 (𝐴)) � 𝑋 (since at each stage, most, i.e. at least the fraction
1 − 1

𝑚2 , of the connecting maps are the identity), and �𝜑𝑚,∞( 𝑓 ) ∈ Lip(𝑋, 𝑑) for every Lipschitz element

𝑓 ∈ 𝑋𝑝𝑚 ,𝑞𝑚 (its Lipschitz constant scaled by at most
∏
𝑚∈N

𝑒
1

𝑚2 ). �

Remark 4.5.

1. The choice of the base points 𝑥0, 𝑥1 ∈ 𝑋 in the proof of Theorem 4.4 is somewhat arbitrary, but
if X happens to be a sphere (with d the geodesic metric), then requiring that 𝑑 (𝑥0, 𝑥1) = diam 𝑋
(that is, choosing antipodal base points) allows a choice of maps 𝑒𝑚 : 𝑋 → 𝑋 that are 1-Lipschitz.
Specifically, given 𝑦𝑚 ∈ 𝑋 , let 𝛾𝑚 be a geodesic (which we view as the meridian of longitude 0)
from 𝑥0 to 𝑥1 that passes through 𝑦𝑚, and define 𝑒𝑚 : 𝑋 → Γ𝑚 = 𝛾𝑚 ([0, 1]) by projection onto
Γ𝑚. With this choice, �𝜑𝑚 ( 𝑓 ) ∈ Lip1 (𝑋, 𝑑) for every 1-Lipschitz element 𝑓 ∈ 𝑋𝑝𝑚 ,𝑞𝑚 . That said,
while potentially important in the one-dimensional setting (see [59, §4]), in the present context this
is largely an aesthetic observation.

2. The construction is much simpler if we drop the requirement that A be projectionless and is valid
for any compact, connected metric space (𝑋, 𝑑): 𝑋𝑝𝑚 ,𝑞𝑚 can be replaced by 𝐴𝑚 = 𝐶 (𝑋, 𝑀𝑛𝑚 ), with
𝜑𝑚 : 𝐴𝑚 → 𝐴𝑚+1 defined just in terms of the identity map and point evaluations. In this case, we
can arrange as in [85, Lemma 3.7] to have 𝜌𝐴(𝐾0(𝐴)) = 𝐺 · 1 ⊆ Aff (𝑇 (𝐴)) for any prescribed
dense subgroup G of Q. In the projectionless case, strict comparison of positive elements (see [78,
Corollary 4.6]) implies that 𝜌𝐴(𝐾0(𝐴)) = Z · 1.

4.4. Finite Rokhlin dimension

Since the models constructed in Theorem 4.4 are classifiable by the Elliott invariant, we can lift
endomorphisms of trace spaces to the C∗-level. By ensuring that the lifted action has finite Rokhlin
dimension, a notion introduced in [56] and extended in [55] to actions on not necessarily unital C∗-
algebras A and further in [84] to (cocycle) actions of residually finite groups, we can arrange for the
crossed product 𝐴�𝛼N to also be classifiable. This is not an essential requirement if our only interest is
observing statistical features of the tracial dynamics, but this procedure will be used in §5 to investigate
the attainable range.

Here, 𝐴 �𝛼 N is the crossed product by an endomorphism in the sense of Cuntz [27, §6.1] (see also
[83]), namely, 𝛼 is extended to an automorphism 𝛼

→
of

𝐴
→

= lim−−→
(
𝐴 𝐴 𝐴 . . .

𝛼 𝛼 𝛼
)

and 𝐴 �𝛼 N is defined to be the corner 𝑝
(
𝐴
→
�𝛼

→
Z

)
𝑝, where 𝑝 ∈ 𝑀

(
𝐴
→
�𝛼

→
Z

)
is the image of 1𝑀 (𝐴) in

the inclusion 𝑀 (𝐴) → 𝑀
(
𝐴
→

)
→ 𝑀

(
𝐴
→
�𝛼

→
Z

)
. In particular, 𝐴 �𝛼 N is stably isomorphic to 𝐴

→
�𝛼

→
Z,

which means, for example, that finite nuclear dimension of one is equivalent to finite nuclear dimension
of the other (see [93, Corollary 2.8]).

For single endomorphisms 𝛼, Rokhlin dimension is defined in [56, 55, 84] only when 𝛼 is invertible,
that is, for (cocycle) actions Z → Aut(𝐴). However, just as in [13, Definition 2.1], which covers the
case of Rokhlin dimension 0, the definition admits a natural extension to the noninvertible case. In [13],
the only tweak is that the finite set F that appears in the definition of Rokhlin dimension is taken to be
an arbitrary subset not of A but of 𝛼𝑝 (𝐴), where 𝑝 ∈ N is the integer that specifies the height of the
tower. As in [13, Proposition 2.2], this is sufficient to guarantee that the automorphism 𝛼

→
has the usual

Rokhlin property.
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But actually, the only reason for this restriction is to include degenerate (e.g., nonunital) examples,
especially the shift 𝛼 :

⊗
N 𝑀𝑛 = 𝑀𝑛∞ → 𝑀𝑛∞ , 𝑎1 ⊗ 𝑎2 ⊗ 𝑎3 ⊗ · · · ↦→ 𝑒 ⊗ 𝑎1 ⊗ 𝑎2 ⊗ 𝑎3 ⊗ · · · (where

𝑒 ∈ 𝑀𝑛 is a minimal projection), which yields 𝑀𝑛∞ �𝛼 N � O𝑛 (see [26, §2]). Since the unmodified
version, that is, [55, Definition 1.21] with single noncommuting towers, can reasonably be expected to
hold for nondegenerate (e.g., unital) endomorphisms, this is the definition we adopt. In other words, in
[55, Definition 1.21] we drop condition (6) and insist that 𝑓 (𝑙)1, 𝑗 = 0 for all 0 ≤ 𝑗 ≤ 𝑝 to arrive at the
following.

Definition 4.6. An endomorphism 𝛼 of a C∗-algebra A is said to have Rokhlin dimension d if d is the
least nonnegative integer with the following property. For any finite set 𝐹 ⊆ 𝐴, integer 𝑝 ≥ 1 and 𝜀 > 0,
there are positive contractions 𝑓 (𝑙)0 , . . . , 𝑓 (𝑙)𝑝−1 ∈ 𝐴, 𝑙 ∈ {0, 1, . . . , 𝑑}, such that:

1. ‖ 𝑓 (𝑙)𝑘 𝑓 (𝑙)𝑗 𝑎‖ < 𝜀 for every 𝑎 ∈ 𝐹, 𝑙 ∈ {0, 1, . . . , 𝑑}, 𝑗 ≠ 𝑘 ∈ {0, 1, . . . , 𝑝 − 1};

2.
���(∑𝑑

𝑙=0
∑𝑝−1

𝑗=0 𝑓 (𝑙)𝑗

)
𝑎 − 𝑎

��� < 𝜀 for every 𝑎 ∈ 𝐹;

3. ‖[ 𝑓 (𝑙)𝑗 , 𝑎]‖ < 𝜀 for every 𝑎 ∈ 𝐹, 𝑙 ∈ {0, 1, . . . , 𝑑}, 𝑗 ∈ {0, 1, . . . , 𝑝 − 1};

4.
���(𝛼( 𝑓 (𝑙)𝑗 ) − 𝑓 (𝑙)𝑗+1

)
𝑎
��� < 𝜀 for every 𝑎 ∈ 𝐹, 𝑙 ∈ {0, 1, . . . , 𝑑}, 𝑗 ∈ {0, 1, . . . , 𝑝−1}, where 𝑓 (𝑙)𝑝 := 𝑓 (𝑙)0 .

This is equivalent to the following more succinct version phrased in terms of Kirchberg’s central
sequence algebra 𝐹 (𝐴) = (𝐴U ∩ 𝐴′)/Ann(𝐴, 𝐴U ) associated to a free ultrafilter U on N (see [62, §1]
and [46, Definition 2.6]). Namely, 𝛼 has Rokhlin dimension ≤ 𝑑 if and only if, for every p, there are
positive contractions 𝑓 (𝑙)𝑚̄ ∈ 𝐹 (𝐴), 𝑙 ∈ {0, 1, . . . , 𝑑}, 𝑚̄ ∈ Z/𝑝Z, such that:

1. 𝑓 (𝑙)𝑚̄ 𝑓 (𝑙)𝑛̄ = 0 for every 𝑙 ∈ {0, 1, . . . , 𝑑}, 𝑚̄ ≠ 𝑛̄ ∈ Z/𝑝Z;
2.

∑𝑑
𝑙=0

∑
𝑚̄∈Z/𝑝Z 𝑓

(𝑙)
𝑚̄ = 1;

3. 𝛼̄( 𝑓 (𝑙)𝑚̄ ) = 𝑓 (𝑙)
𝑚+1

for every 𝑙 ∈ {0, 1, . . . , 𝑑}, 𝑚̄ ∈ Z/𝑝Z, where 𝛼̄ is the action on 𝐹 (𝐴) induced by 𝛼.

Since the Elliott invariant is insensitive to (approximate) unitary equivalence, we obtain the following
from [84] (or in the unital setting, [56, Theorem 3.4]). Note that we omit all cocycles and only consider
the group 𝐺 = Z.

Lemma 4.7. Let A be a separable, Z-stable C∗-algebra, and let 𝛽 ∈ End(𝐴) be nondegenerate (that
is, 𝛽 maps an(y) approximate unit of A to an approximate unit of A). Then, there is a nondegenerate
𝛼 ∈ End(𝐴) such that 𝛼 has Rokhlin dimension ≤ 1 and Ell(𝛼) = Ell(𝛽).

Proof. By [84, Remark 11.13], there is an automorphism 𝜃 of Z (namely, a tensor product of shifts)
that has Rokhlin dimension 1. Note that Ell(𝜃) is the identity. As in [84, Theorem 11.5], since Z
is strongly self-absorbing there is an isomorphism 𝜑 : 𝐴 → 𝐴 ⊗ Z that is approximately unitarily
equivalent to id𝐴 ⊗1Z . By [84, Proposition 11.7], 𝛽 ⊗ 𝜃 has Rokhlin dimension ≤ 1, and hence so does
𝛼 = 𝜑−1 ◦ (𝛽 ⊗ 𝜃) ◦ 𝜑. �

Next, we observe that crossed products of classifiable C∗-algebras by endomorphisms with finite
Rokhlin dimension are also classifiable.

Lemma 4.8. Let A be a simple, separable C∗-algebra of finite nuclear dimension, and let 𝛼 be a
nondegenerate endomorphism of A with finite Rokhlin dimension. Then, 𝐴 �𝛼 N is simple and has finite
nuclear dimension. Moreover,

𝑇
(
𝐴
→
�𝛼

→
Z

)
� 𝑇

(
𝐴
→

)𝛼
→.

Proof. Extending to 𝐴
→

, we may assume that𝛼 is an automorphism. Since𝛼 has finite Rokhlin dimension,
𝛼𝑚 is outer for every 𝑚 ∈ Z \ {0}. In fact, 𝛼 : Z → Aut(𝐴) is strongly outer, that is, for any 𝑚 ≠ 0
and any 𝛼-invariant trace 𝜏 ∈ 𝑇 (𝐴), the unique extension of 𝛼𝑚 to a trace-preserving automorphism
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𝛼𝑚𝜏 of M = 𝜋𝜏 (𝐴)′′, the von Neumann closure of the Gelfand–Naimark–Segal (GNS) representation
associated to 𝜏, is outer. To see this, one proceeds exactly as in the proof of [46, Theorem 7.8 (3) ⇒ (1)],
just replacing 𝐴U ∩ 𝐴′ by 𝐹 (𝐴). We recall this argument here for convenience.

By [70, Propositions 2.2, 2.3], we have the required (unital, equivariant) quotient map 𝜅𝜏 : 𝐹 (𝐴) →
MU

𝜏 ∩ M′
𝜏 . The key point is that, were 𝛼𝑚𝜏 an inner automorphism of M𝜏 , say 𝛼𝑚𝜏 = Ad𝑢 for some

unitary 𝑢 ∈ M𝜏 , then every 𝑥 ∈ MU
𝜏 ∩M′

𝜏 would commute with u and so the action 𝛼𝑚𝜏 induced by 𝛼𝑚𝜏
on MU

𝜏 ∩M′
𝜏 would be trivial. We now show that this is not the case. Choose p such that 𝑚 ∉ 𝑝Z, and

let 𝑓 (𝑙)
𝑘̄

∈ 𝐹 (𝐴), 𝑙 ∈ {0, 1, . . . , 𝑑}, 𝑘̄ ∈ Z/𝑝Z be as in Definition 4.6 for this p. Since 𝜅𝜏 is unital, there
is 𝑙0 ∈ {0, 1, . . . , 𝑑} such that 𝜅𝜏 ( 𝑓 (𝑙0)𝑘̄

) ≠ 0 for some (and hence, by equivariance, every) 𝑘̄ ∈ Z/𝑝Z.

Then,
{
𝜅𝜏 ( 𝑓 (𝑙0)𝑘̄

)
}
𝑘̄∈Z/𝑝Z

are pairwise orthogonal positive contractions with 𝛼𝑚𝜏 (𝜅𝜏 ( 𝑓 (𝑙0)𝑘̄
)) = 𝜅𝜏 ( 𝑓 (𝑙0)

𝑚+𝑘
).

Since 𝑚 ∉ 𝑝Z, there is 𝑘̄ such that 𝑚 + 𝑘 ≠ 𝑘̄ in Z/𝑝Z, and so 𝛼𝑚𝜏 is indeed nontrivial.
By [63, Theorem 3.1], outerness of 𝛼 : Z → Aut(𝐴) implies that 𝐴 �𝛼 Z is simple. Finite nuclear

dimension is guaranteed by [84, Theorem 6.2]. The final statement follows from [65, Proposition 2.3],
whose proof also works in the nonunital setting. �

Combining Lemma 4.7 and Lemma 4.8 yields the following.

Theorem 4.9. Let A be a simple, separable, unital, Z-stable C∗-algebra that has trivial tracial pairing
and satisfies the UCT, and for which the extreme boundary 𝑋𝐴 of the trace space𝑇 (𝐴) is compact. Then,
for every group homomorphism 𝜅1 : 𝐾1(𝐴) → 𝐾1(𝐴) and continuous map ℎ : 𝑋𝐴 → 𝑋𝐴, there exists
a unital endomorphism 𝛼 of A such that 𝐾1(𝛼) = 𝜅1, 𝑇 (𝛼) |𝑋𝐴 = ℎ and the crossed product 𝐴 �𝛼 N is
classifiable.

Proof. By Lemma 3.1, we can extend h to a continuous affine map 𝑇 (𝐴) → 𝑇 (𝐴). Then, since A has
trivial tracial pairing, h, 𝜅1 and id : 𝐾0(𝐴) → 𝐾0(𝐴) determine a homomorphism Ell(𝐴) → Ell(𝐴). By
[52, Theorem 5.12], there exists a unital endomorphism 𝛽 ∈ End(𝐴) such that𝑇 (𝛽) = ℎ and𝐾1(𝛽) = 𝜅1.
Finally, by Lemma 4.7, we can find 𝛼 ∈ End(𝐴) with Ell(𝛼) = Ell(𝛽) such that 𝛼 has finite Rokhlin
dimension, which by Lemma 4.8 implies that 𝐴 �𝛼 N is classifiable. �

Together, Theorems 4.4 and 4.9 provide the means of lifting a topological dynamical system (𝑋, ℎ)
on a compact metric space to a C∗-dynamical system (𝐴, 𝛼) on a model classifiable C∗-algebra, such
that the crossed product is also classifiable. Moreover, the statistical phenomena described in §4.1 can be
translated into tracial versions that are witnessed by the dense subset Lip(𝐴) =

⋃
𝑘∈N Lip𝑘 (𝐴) ⊆ 𝐴𝑠𝑎,

where

Lip𝑘 (𝐴) = {𝑎 ∈ 𝐴𝑠𝑎 | 𝑎̂ ∈ Lip𝑘 (𝑋, 𝑑)}.

Here are some illustrative examples.

Example 4.10 (Estimates of large tracial deviation). Suppose that ℎ : 𝑋 → 𝑋 is uniquely ergodic. Let 𝜇
be the measure fixed by h, and let 𝜏𝜇 be the corresponding unique trace fixed by 𝛼. Then, by Proposition
4.3, for every 𝜀 > 0 and every 𝑘 ∈ N, there exist constants 𝑐1, 𝑐2 > 0 such that, for every 𝑎 ∈ Lip𝑘 (𝐴)
and every 𝑛 ∈ N,

𝜇

({
𝜏 ∈ 𝜕𝑒 (𝑇 (𝐴)) |

�����1𝑛
𝑛−1∑
𝑖=0

𝜏(𝛼𝑖 (𝑎)) − 𝜏𝜇 (𝑎)

����� > 𝜀
})

≤ 𝑐1𝑒
−𝑐2𝑛𝜀

2
.

This in particular applies to minimal, uniquely ergodic homeomorphisms of odd spheres. In this case,
one computes from the six-term exact sequence that

(𝐾0 (𝑆2𝑚−1
𝑝,𝑞 ), (𝐾0(𝑆2𝑚−1

𝑝,𝑞 ))+, [1], 𝐾1(𝑆2𝑚−1
𝑝,𝑞 )) � (Z,N, 1,Z).
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Taking 𝜅1 : 𝐾1(𝐴) → 𝐾1(𝐴) in Theorem 4.9 to be the zero homomorphism, the extended algebra 𝐴
→

has
the same Elliott invariant as (and is therefore isomorphic to) a limit of prime dimension drop algebras.
One computes from the Pimsner–Voiculescu sequence (see also [8, Theorem 10.10.4]) that

(𝐾0(𝐴→ �𝛼→ Z), (𝐾0(𝐴→ �𝛼→ Z))+, [1], 𝐾1(𝐴→ �𝛼→ Z)) � (Z,N, 1,Z).

Therefore, 𝐴
→
�𝛼

→
Z is isomorphic (hence, 𝐴�𝛼N is at least stably isomorphic) to the C∗-algebra𝐶 (𝑍)�𝜁 Z

of [31, Proposition 2.8], which contains Z as a large subalgebra.

Example 4.11 (Exponentially fast tracial mixing). Suppose that (𝑋, 𝜇, ℎ) has EDC (see Definition 4.1).
Then, there exists 𝛾 ∈ (0, 1) such that for every 𝑎, 𝑏 ∈ Lip(𝐴) there exists 𝐶 > 0 such that for every
𝑛 ∈ N ����∫

𝜕𝑒 (𝑇 (𝐴))
�𝛼𝑛 (𝑎) 𝑏̂ 𝑑𝜇 − 𝜏𝜇 (𝑎) · 𝜏𝜇 (𝑏)���� ≤ 𝐶𝛾𝑛.

This holds, for example, when the tracial dynamical system is given by a holomorphic automorphism h
of positive entropy on a compact Kähler surface X (see §4.2).

Example 4.12 (The tracial CLT). Suppose that (𝑋, 𝜇, ℎ) satisfies the CLT (see Definition 4.2). Then,
for every 𝑎 ∈ Lip(𝐴) with 𝜎 = 𝜎𝑎̂ |𝑋 > 0 (which is the typical case) translated so that 𝜏𝜇 (𝑎) = 0,

lim
𝑛→∞

𝜇

({
𝜏 ∈ 𝜕𝑒 (𝑇 (𝐴)) |

1
√
𝑛

𝑛−1∑
𝑖=0

𝜏(𝛼𝑖 (𝑎)) ≤ 𝑧

})
=

1
𝜎
√

2𝜋

∫ 𝑧

−∞
exp

(
− 𝑡2

2𝜎2

)
𝑑𝑡

for every 𝑧 ∈ R. This holds, for example, for tracial dynamical systems given by mixing axiom A
diffeomorphisms like hyperbolic toral automorphisms, various systems arising from complex geometry,
and certain expanding circle maps (see §4.2).

5. The range of the invariant

Theorem 5.1. Let K be the class of infinite-dimensional, simple, separable, 𝐾𝐾-contractible C∗-
algebras that satisfy the UCT and have continuous scale, nonempty trace space and finite nuclear
dimension. Then, for every 𝐵 ∈ K there exists 𝐴 ∈ K and an automorphism 𝛼 ∈ Aut(𝐴) such that
𝜕𝑒 (𝑇 (𝐴)) is compact and zero dimensional, and 𝐴 �𝛼 Z � 𝐵.

Proof. By [37, Theorem 3], there is a subshift X of the full shift ({0, 1}Z, ℎ) such that the simplex
M(𝑋)ℎ of h-invariant Borel probability measures on X is affinely homeomorphic to 𝑇 (𝐵). Let K be a
Bauer simplex with 𝜕𝑒 (𝐾) � 𝑋 (namely, the simplex of Borel probability measures on X), and let A be the
unique object in K (up to isomorphism) with 𝑇 (𝐴) � 𝐾 . As in the proof of Theorem 4.9, but appealing
to [41, Theorem 7.5] instead of [52, Theorem 5.12], we can extend h to an affine homeomorphism
𝑇 (𝐴) → 𝑇 (𝐴) and lift it to an automorphism 𝛼 : 𝐴 → 𝐴 with finite Rokhlin dimension. By Lemma
4.8, 𝐴 �𝛼 Z is simple and Z-stable (since it has finite nuclear dimension – see [87]), and

𝑇 (𝐴 �𝛼 Z) � 𝑇 (𝐴)𝛼 �M(𝑋)ℎ � 𝑇 (𝐵).

The Pimsner–Voiculescu sequence shows that 𝐴 �𝛼 Z is 𝐾𝐾-contractible. The UCT for A passes to the
crossed product 𝐴�𝛼 Z (see [8, 22.3.5]). Finally, 𝐴�𝛼 Z also satisfies the definition [42, Definition 5.1]
of continuous scale: Fix an increasing approximate unit (𝑒𝑛)𝑛∈N for A that satisfies

𝑒𝑛+1𝑒𝑛 = 𝑒𝑛𝑒𝑛+1 = 𝑒𝑛 for every 𝑛 ∈ N
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and such that, for any nonzero positive element 𝑎 ∈ 𝐴, there exists 𝑁 ∈ N such that

𝑒𝑚 − 𝑒𝑛 � 𝑎 for every 𝑚 > 𝑛 ≥ 𝑁 (5.1)

(where � denotes Cuntz subequivalence). Note that (𝑒𝑛)𝑛∈N passes to an approximate unit for 𝐴 �𝛼 Z.
Since ‖𝜏‖ = lim𝑛→∞ 𝜏(𝑒𝑛) for any trace 𝜏, it follows that all traces on 𝐴�𝛼Z are bounded. Since 𝐴�𝛼Z
is simple and Z-stable, it has strict comparison of positive elements (see [43, Theorem 4.4, Theorem
6.6], and note that there are no compact elements of Cu(𝐴 �𝛼 Z) since 𝐴 �𝛼 Z is stably projectionless).
In other words, to demonstrate equation (5.1) for some fixed nonzero positive element 𝑏 ∈ 𝐴 �𝛼 Z on
the right-hand side, it suffices to show that

𝑑𝜏 (𝑒𝑚 − 𝑒𝑛) < 𝑑𝜏 (𝑏) for every 𝜏 ∈ 𝑇 (𝐴 �𝛼 Z). (5.2)

Here, 𝑑𝜏 : 𝑥 ↦→ lim𝑛→∞ 𝜏(𝑥
1
𝑛 ) is the rank function associated to the trace 𝜏. For this fixed 𝑏 ∈ 𝐴 �𝛼 Z,

the function 𝑇 (𝐴)𝛼 → (0,∞), 𝜏 ↦→ 𝑑𝜏 (𝑏) (first extending 𝜏 ∈ 𝑇 (𝐴)𝛼 uniquely to 𝑇 (𝐴 �𝛼 Z)) is lower
semicontinuous, hence attains its nonzero minimum 𝜀 on the compact set 𝑇 (𝐴)𝛼. By [43, Theorem
6.6], there exists a positive element 𝑎 ∈ 𝐴 whose Cuntz class corresponds to the constant function 𝜀

2
on 𝑇 (𝐴), that is, for which 𝑑𝜏 (𝑎) = 𝜀

2 for every 𝜏 ∈ 𝑇 (𝐴). (We may assume that a is in A, rather
than its stabilisation, by replacing 𝜀 by min{𝜀, 1}. Since for any strictly positive element ℎ ∈ 𝐴, the
function 𝜏 ↦→ 𝑑𝜏 (ℎ) = ‖𝜏‖ is constantly 1 on 𝑇 (𝐴), this implies that 𝑎 � ℎ. By [42, Theorem
11.5] or [45, Corollary 6.8], A has stable rank one, so it follows that a is Cuntz equivalent, in fact
Murray–von Neumann equivalent, to an element of the hereditary subalgebra generated by h, which
is A.) By equation (5.1), there exists 𝑁 ∈ N such that, for every 𝑚 > 𝑛 ≥ 𝑁 and every 𝜏 ∈ 𝑇 (𝐴)𝛼,
𝑑𝜏 (𝑒𝑚 − 𝑒𝑛) ≤ 𝑑𝜏 (𝑎) < 𝑑𝜏 (𝑏), that is, such that equation (5.2) holds.

We have now verified that 𝐴�𝛼 Z ∈ K, and so by the classification obtained in [41], 𝐴�𝛼 Z � 𝐵. �

Remark 5.2.

1. Dropping the assumption of continuous scale, the crossed products of Theorem 5.1 cover, up to
stable isomorphism, the full class of infinite-dimensional, simple, separable, stably projectionless,
𝐾𝐾-contractible C∗-algebras that have finite nuclear dimension and satisfy the UCT.

2. Suppose that instead of a 𝐾𝐾-contractible C∗-algebra, A is taken to be a limit of prime dimension
drop algebras. Then, 𝐵 = 𝐴 �𝛼 Z has K-theory

(𝐾0(𝐵), (𝐾0 (𝐵))+, [1], 𝐾1(𝐵)) � (Z,N, 1,Z).

Therefore, the C∗-algebras constructed in this way include (up to isomorphism) the algebras
𝐶 (𝑍𝜑) �𝜁 Z of [31, §3].
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