In this paper we first prove some criteria for the propagation of algebraic dependence of dominant meromorphic mappings from an analytic finite covering space X over the complex m-space into a projective algebraic manifold. We study this problem under a condition on the existence of meromorphic mappings separating the generic fibers of X. We next give applications of these criteria to the uniqueness problem of meromorphic mappings. We deduce unicity theorems for meromorphic mappings and also give some other applications. In particular, we study holomorphic mappings into a smooth elliptic curve E and give conditions under which two holomorphic mappings from X into E are algebraically related.