We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $p \geq 5$ be a prime number, and let $G = {\mathrm {SL}}_2(\mathbb {Q}_p)$. Let $\Xi = {\mathrm {Spec}}(Z)$ denote the spectrum of the centre Z of the pro-p Iwahori–Hecke algebra of G with coefficients in a field k of characteristic p. Let $\mathcal {R} \subset \Xi \times \Xi $ denote the support of the pro-p Iwahori ${\mathrm {Ext}}$-algebra of G, viewed as a $(Z,Z)$-bimodule. We show that the locally ringed space $\Xi /\mathcal {R}$ is a projective algebraic curve over ${\mathrm {Spec}}(k)$ with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset U of $\Xi /\mathcal {R}$, we construct a stable localising subcategory $\mathcal {L}_U$ of the category of smooth k-linear representations of G.
The main theme of this paper is to study $\tau $-tilting subcategories in an abelian category $\mathscr {A}$ with enough projective objects. We introduce the notion of $\tau $-cotorsion torsion triples and investigate a bijection between the collection of $\tau $-cotorsion torsion triples in $\mathscr {A}$ and the collection of support $\tau $-tilting subcategories of $\mathscr {A}$, generalizing the bijection by Bauer, Botnan, Oppermann, and Steen between the collection of cotorsion torsion triples and the collection of tilting subcategories of $\mathscr {A}$. General definitions and results are exemplified using persistent modules. If $\mathscr {A}=\mathrm{Mod}\mbox {-}R$, where R is a unitary associative ring, we characterize all support $\tau $-tilting (resp. all support $\tau ^-$-tilting) subcategories of $\mathrm{Mod}\mbox {-}R$ in terms of finendo quasitilting (resp. quasicotilting) modules. As a result, it will be shown that every silting module (resp. every cosilting module) induces a support $\tau $-tilting (resp. support $\tau ^{-}$-tilting) subcategory of $\mathrm{Mod}\mbox {-}R$. We also study the theory in $\mathrm {Rep}(Q, \mathscr {A})$, where Q is a finite and acyclic quiver. In particular, we give an algorithm to construct support $\tau $-tilting subcategories in $\mathrm {Rep}(Q, \mathscr {A})$ from certain support $\tau $-tilting subcategories of $\mathscr {A}$.
Let
$\textsf{T}$
be a triangulated category with shift functor
$\Sigma \colon \textsf{T} \to \textsf{T}$
. Suppose
$(\textsf{A},\textsf{B})$
is a co-t-structure with coheart
$\textsf{S} = \Sigma \textsf{A} \cap \textsf{B}$
and extended coheart
$\textsf{C} = \Sigma^2 \textsf{A} \cap \textsf{B} = \textsf{S}* \Sigma \textsf{S}$
, which is an extriangulated category. We show that there is a bijection between co-t-structures
$(\textsf{A}^{\prime},\textsf{B}^{\prime})$
in
$\textsf{T}$
such that
$\textsf{A} \subseteq \textsf{A}^{\prime} \subseteq \Sigma \textsf{A}$
and complete cotorsion pairs in the extended coheart
$\textsf{C}$
. In the case that
$\textsf{T}$
is Hom-finite,
$\textbf{k}$
-linear and Krull–Schmidt, we show further that there is a bijection between complete cotorsion pairs in
$\textsf{C}$
and functorially finite torsion classes in
$\textsf{mod}\, \textsf{S}$
.
For a weight structure w on a triangulated category $\underline {C}$ we prove that the corresponding weight complex functor and some other (weight-exact) functors are ‘conservative up to weight-degenerate objects’; this improves earlier conservativity formulations. In the case $w=w^{sph}$ (the spherical weight structure on $SH$), we deduce the following converse to the stable Hurewicz theorem: $H^{sing}_{i}(M)=\{0\}$ for all $i<0$ if and only if $M\in SH$ is an extension of a connective spectrum by an acyclic one. We also prove an equivariant version of this statement.
The main idea is to study M that has no weights$m,\dots ,n$ (‘in the middle’). For $w=w^{sph}$, this is the case if there exists a distinguished triangle $LM\to M\to RM$, where $RM$ is an n-connected spectrum and $LM$ is an $m-1$-skeleton (of M) in the sense of Margolis’s definition; this happens whenever $H^{sing}_i(M)=\{0\}$ for $m\le i\le n$ and $H^{sing}_{m-1}(M)$ is a free abelian group. We also consider morphisms that kill weights$m,\dots ,n$; those ‘send n-w-skeleta into $m-1$-w-skeleta’.
We prove that a finite-dimensional algebra
$ \Lambda $
is
$ \tau $
-tilting finite if and only if all the bricks over
$ \Lambda $
are finitely generated. This is obtained as a consequence of the existence of proper locally maximal torsion classes for
$ \tau $
-tilting infinite algebras.
As a general framework for the studies of t-structures on triangulated categories and torsion pairs in abelian categories, we introduce the notions of extriangulated categories with negative first extensions and s-torsion pairs. We define a heart of an interval in the poset of s-torsion pairs, which naturally becomes an extriangulated category with a negative first extension. This notion generalises hearts of t-structures on triangulated categories and hearts of twin torsion pairs in abelian categories. In this paper, we show that an interval in the poset of s-torsion pairs is bijectively associated with s-torsion pairs in the corresponding heart. This bijection unifies two well-known bijections: one is the bijection induced by the HRS-tilt of t-structures on triangulated categories. The other is Asai–Pfeifer’s and Tattar’s bijections for torsion pairs in an abelian category, which is related to
$\tau$
-tilting reduction and brick labelling.
Building on the embedding of an n-abelian category
$\mathscr {M}$
into an abelian category
$\mathcal {A}$
as an n-cluster-tilting subcategory of
$\mathcal {A}$
, in this paper, we relate the n-torsion classes of
$\mathscr {M}$
with the torsion classes of
$\mathcal {A}$
. Indeed, we show that every n-torsion class in
$\mathscr {M}$
is given by the intersection of a torsion class in
$\mathcal {A}$
with
$\mathscr {M}$
. Moreover, we show that every chain of n-torsion classes in the n-abelian category
$\mathscr {M}$
induces a Harder–Narasimhan filtration for every object of
$\mathscr {M}$
. We use the relation between
$\mathscr {M}$
and
$\mathcal {A}$
to show that every Harder–Narasimhan filtration induced by a chain of n-torsion classes in
$\mathscr {M}$
can be induced by a chain of torsion classes in
$\mathcal {A}$
. Furthermore, we show that n-torsion classes are preserved by Galois covering functors, thus we provide a way to systematically construct new (chains of) n-torsion classes.
Let ${\mathcal{R}}$ be a small preadditive category, viewed as a “ring with several objects.” A right${\mathcal{R}}$-module is an additive functor from ${\mathcal{R}}^{\text{op}}$ to the category $Ab$ of abelian groups. We show that every hereditary torsion theory on the category $({\mathcal{R}}^{\text{op}},Ab)$ of right ${\mathcal{R}}$-modules must be differential.
The purpose of this paper is to understand lattices of certain subcategories in module categories of representation-finite gentle algebras called tiling algebras, as introduced by Coelho Simões and Parsons. We present combinatorial models for torsion pairs and wide subcategories in the module category of tiling algebras. Our models use the oriented flip graphs and noncrossing tree partitions, previously introduced by the authors, and a description of the extension spaces between indecomposable modules over tiling algebras. In addition, we classify two-term simple-minded collections in bounded derived categories of tiling algebras. As a consequence, we obtain a characterization of c-matrices for any quiver mutation-equivalent to a type A Dynkin quiver.
We show that silting modules are closely related with localizations of rings. More precisely, every partial silting module gives rise to a localization at a set of maps between countably generated projective modules and, conversely, every universal localization, in the sense of Cohn and Schofield, arises in this way. To establish these results, we further explore the finite-type classification of tilting classes and we use the morphism category to translate silting modules into tilting objects. In particular, we prove that silting modules are of finite type.
This paper studies the combinatorics of lattice congruences of the weak order on a finite Weyl group $W$, using representation theory of the corresponding preprojective algebra $\unicode[STIX]{x1D6F1}$. Natural bijections are constructed between important objects including join-irreducible congruences, join-irreducible (respectively, meet-irreducible) elements of $W$, indecomposable $\unicode[STIX]{x1D70F}$-rigid (respectively, $\unicode[STIX]{x1D70F}^{-}$-rigid) modules and layers of $\unicode[STIX]{x1D6F1}$. The lattice-theoretically natural labelling of the Hasse quiver by join-irreducible elements of $W$ is shown to coincide with the algebraically natural labelling by layers of $\unicode[STIX]{x1D6F1}$. We show that layers of $\unicode[STIX]{x1D6F1}$ are nothing but bricks (or equivalently stones, or 2-spherical modules). The forcing order on join-irreducible elements of $W$ (arising from the study of lattice congruences) is described algebraically in terms of the doubleton extension order. We give a combinatorial description of indecomposable $\unicode[STIX]{x1D70F}^{-}$-rigid modules for type $A$ and $D$.
We study bounded derived categories of the category of representations of infinite quivers over a ring $R$. In case $R$ is a commutative noetherian ring with a dualising complex, we investigate an equivalence similar to Grothendieck duality for these categories, while a notion of dualising complex does not apply to them. The quivers we consider are left (resp. right) rooted quivers that are either noetherian or their opposite are noetherian. We also consider reflection functor and generalize a result of Happel to noetherian rings of finite global dimension, instead of fields.
The main goal of this paper is to deduce (from a recent resolution of singularities result of Gabber) the following fact: (effective) Chow motives with ℤ[1/p]-coefficients over a perfect field k of characteristic p generate the category DMeffgm[1/p] (of effective geometric Voevodsky’s motives with ℤ[1/p]-coefficients). It follows that DMeffgm[1/p] can be endowed with a Chow weight structure wChow whose heart is Choweff[1/p] (weight structures were introduced in a preceding paper, where the existence of wChow for DMeffgmℚ was also proved). As shown in previous papers, this statement immediately yields the existence of a conservative weight complex functor DMeffgm[1/p]→Kb (Choweff [1/p]) (which induces an isomorphism on K0-groups), as well as the existence of canonical and functorial (Chow)-weight spectral sequences and weight filtrations for any cohomology theory on DMeffgm[1/p] . We also mention a certain Chow t-structure for DMeff−[1/p] and relate it with unramified cohomology.
Let R be an associative ring which is not necessarily commutative. For any torsion theory τ on the category of left R-modules and for any nonnegative integer n we define and study the notion of the nth local cohomology functor with respect to τ. For suitably nice rings a bound for the nonvanishing of these functors is given in terms of the τ-dimension of the modules.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.