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Abstract
Let 𝑝 ≥ 5 be a prime number, and let 𝐺 = SL2 (Q𝑝). Let Ξ = Spec(𝑍) denote the spectrum of the centre Z of the
pro-p Iwahori–Hecke algebra of G with coefficients in a field k of characteristic p. Let R ⊂ Ξ×Ξ denote the support
of the pro-p Iwahori Ext-algebra of G, viewed as a (𝑍, 𝑍)-bimodule. We show that the locally ringed space Ξ/R is
a projective algebraic curve over Spec(𝑘) with two connected components and that each connected component is a
chain of projective lines. For each Zariski open subset U of Ξ/R, we construct a stable localising subcategory L𝑈
of the category of smooth k-linear representations of G.
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1. Introduction

1.1. Background

Let k be a field, let G be a p-adic reductive group and let Mod𝑘 (𝐺) denote the category of smooth k-
linear representations of G. The centre ℨ(𝐺) of the category Mod𝑘 (𝐺) is called the Bernstein centre of
G. When k is the field of complex numbers, ℨ(𝐺) was studied in detail by Bernstein [Ber] and it plays
a fundamental role in the classical local Langlands correspondence. Recently, there has been interest in
the case where k is a field of characteristic p motivated by considerations from the p-adic and mod-p
Langlands programmes. However, in this case, ℨ(𝐺) turned out to be quite small: In our previous work
[AS23], we showed that ℨ(𝐺) only depends on the centre 𝑍 (𝐺) of G and in particular, that ℨ(𝐺) is
isomorphic to the finite-dimensional k-algebra 𝑘 [𝑍 (𝐺)] whenever G is assumed to be connected and
semisimple.

This situation is reminiscent of the fact that the ring of global regular functions O(𝑋) on any
projective variety X is also rather small. This observation becomes relevant to the Bernstein centre of G
when we recall the work of Gabriel [Gab], who proved that the structure sheaf of a noetherian scheme X
can be reconstructed from the category QCoh(𝑋) of quasi-coherent sheaves on X, by associating with
any open subscheme U of X the localising subcategory L𝑈 of QCoh(𝑋) consisting of sheaves supported
on the complement of U in X and by showing that the ring O(𝑈) can be recovered from QCoh(𝑋) as
the centre of the quotient category QCoh(𝑋)/L𝑈 . In our recent work [AS24], we generalised Gabriel’s
construction to the case of an arbitrary Grothendieck category C, as follows.

Recall that the localising subcategory L of C is said to be stable if it is stable under essential
extensions. The set L𝑠𝑡 (C) of stable localising subcategories of C forms a partially ordered set under
reverse inclusion. For L and L1, · · · ,L𝑛 in L𝑠𝑡 (C), we call {L𝑖}1≤𝑖≤𝑛 a covering of L if L =

⋂
𝑖 L𝑖 . This

notion makes L𝑠𝑡 (C) into a Grothendieck site, and we proved in [AS24] Theorem 1.1 that the presheaf
L ↦→ 𝑍 (C/L) on L𝑠𝑡 (C) is in fact a sheaf. When the category C is additionally assumed to be locally
noetherian, we showed that there is an order-reversing bijection 𝑈 ↦→ L𝑈 between the so-called stable
subsets of the injective spectrum Sp(C) of C, and L𝑠𝑡 (C). We showed in [AS24] Theorem 1.2 that the
corresponding presheaf𝑈 ↦→ 𝑍 (C/L𝑈 ) on Sp(C) satisfies the sheaf condition with respect to arbitrary
coverings. These results suggest that, even though 𝑍 (Mod𝑘 (𝐺)) may be small and uninteresting, this
only reflects the fact that this centre is the ring of global sections of the sheaf formed by the centres
of the quotient categories of Mod𝑘 (𝐺). Of course, this sheaf is only interesting if one can write down
sufficiently many stable localising subcategories of Mod𝑘 (𝐺).
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1.2. Main results

The main goal in this paper is to construct a large family of stable localising subcategories of Mod𝑘 (𝐺)
in the case where 𝑝 ≥ 5 and G is the group SL2 (Q𝑝). In order to state our results, it will be convenient to
introduce an axiomatic framework as follows. Let A be a full abelian subcategory of a locally noetherian
Grothendieck categoryC. We say thatC is a thickening ofA if, roughly speaking,1 every noetherian object
in C has a finite filtration all of whose subquotients lie inA, and the inclusion functor 𝑖 : A→ C has a left
exact right adjoint 𝑟 : C → A which restricts to the identity functor on A and which respects nonzero
objects in C. We prove that r induces a bijection 𝑟 : Sp(C) �−→ Sp(A) between the corresponding
injective spectra and that the map L ↦→ L ∩ A defines a bijection between the set of localising
subcategories of C and the set of localising subcategories of A. The bijection 𝑟 : Sp(C) �−→ Sp(A)
respects stable subsets and therefore induces an injective map r : L𝑠𝑡 (C) → L𝑠𝑡 (A); however, r is in
general not surjective.

Example 1.2.1. Let 𝐺 = SL2 (Q𝑝),and let I be the pro-p Iwahori subgroup of G. Let Mod𝐼𝑘 (𝐺)
denote the full subcategory of Mod𝑘 (𝐺) whose objects are generated by their I-fixed vectors, and
let 𝑟 (𝑉) = 𝑘 [𝐺] · 𝑉 𝐼 for all V in Mod𝑘 (𝐺). We show in §2.1 below that Mod𝑘 (𝐺) is a thickening
of Mod𝐼𝑘 (𝐺) and moreover that the compactly induced representation ind𝐺𝐼 (𝑘) is in fact a noetherian
projective generator of Mod𝐼𝑘 (𝐺).

Returning to our axiomatic framework, we assume in addition that A has a noetherian projective
generator P. The functor HomA(𝑃,−) : A→ Mod(𝐻) is then an equivalence of categories with quasi-
inverse 𝑃 ⊗𝐻 − : Mod(𝐻) → A, where 𝐻 := EndA(𝑃)op, and in Theorem 3.5.8 we show that the
image of r consists precisely of those localising subcategories of A that are preserved under the functor
𝑃 ⊗𝐻 Ext1C (𝑃,−) : A → A. To understand this condition better we introduce the graded (𝐻, 𝐻)-
bimodule

Ext∗C (𝑃, 𝑃) :=
∞⊕
𝑖=0

Ext𝑖C (𝑃, 𝑃) (1)

which is in particular a module for 𝑍 ⊗ 𝑍 := 𝑍 ⊗Z 𝑍 , where 𝑍 := 𝑍 (𝐻) is the centre of H. We let
J := Ann𝑍 ⊗𝑍 (Ext∗C (𝑃, 𝑃)) be its annihilator ideal andR := 𝑉 (J ) ⊆ Spec(𝑍⊗𝑍) be the corresponding
Zariski closed subset. Let 𝜋1, 𝜋2 : R → Ξ := Spec(𝑍) denote the restrictions of the two projection
maps Spec(𝑍 ⊗ 𝑍) ⇒ Ξ. We then have a coequaliser diagram

R
𝜋1 ��

𝜋2
�� Ξ

q �� Ξ/R

in the category of locally ringed spaces (cf. [DG] Proposition I.1.1.6). To state our main theorem, we
introduce the map 𝜏 : Sp(C) → Ξ/R by the commutativity of the following diagram:

Sp(A)

�
��

Sp(C)

𝜏

��

𝑟

���

Sp(Mod(𝐻))

��
Spec(𝐻) 𝜑

�� Spec(𝑍) = Ξ q
�� Ξ/R.

1See Definition 3.1.1 for the precise definition.
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The first vertical arrow on the left comes from the equivalence HomA(𝑃,−) : A �−→ Mod(𝐻), and the
map 𝜑 is given by 𝜑(𝑃) = 𝑃 ∩ 𝑍 for all 𝑃 ∈ Spec(𝐻). The second vertical arrow comes from [Gab] V
§ 4; it is a bijection if H is finitely generated as a module over its centre. Our first main result is then the
following

Theorem 1.2.2 (Proposition 3.7.4). Let C be a thickening of A. Suppose that A has a noetherian
projective generator P, and let 𝐻 = EndA(𝑃)op. Assume furthermore that:

(A1) H is finitely generated as a module over its centre Z,
(A2) there is an integer d such that Ext 𝑗C (𝑃,−)|A = 0 for any 𝑗 > 𝑑 and
(A3) 𝑍 ⊗ 𝑍/J 𝑑+1 is noetherian.

Then 𝜏 : Sp(C) → Ξ/R is continuous with respect to the stable topologies.

In this generality, Ξ/R is just a locally ringed space and 𝜏 is only a surjective map. Section §4 of our
paper is devoted to the computation of Ξ/R in the situation of Example 1.2.1 above, relying crucially
on the calculations of [OS22] on the structure of the pro-p Iwahori Ext-algebra (1). Our second main
result is then the following

Theorem 1.2.3 (Theorem 4.5.23, Corollary 4.5.24). Suppose that 𝑝 ≥ 5, 𝐺 = SL2 (Q𝑝), C = Mod𝑘 (𝐺)
and A = Mod𝐼𝑘 (𝐺).

a) Ξ/R is a scheme.
b) Ξ/R has two connected components.
c) Each connected component of Ξ/R is a chain of projective lines.

Example 1.2.4. When 𝑝 = 13, the scheme Ξ/R looks as follows:

In Example 4.5.25 below, we sketch how to obtain this gluing from the scheme Ξ.

Corollary 1.2.5. Let 𝑝 ≥ 5, and let 𝐺 = SL2 (Q𝑝). For every Zariski open subset U of Ξ/R, 𝜏−1(𝑈) is
a stable open subset of Sp(Mod𝑘 (𝐺)).

Proof. This follows from Theorem 1.2.2, once we verify its conditions. Note that C = Mod𝑘 (𝐺) is a
thickening of A = Mod𝐼𝑘 (𝐺) and that 𝑃 = ind𝐺𝐼 (𝑘) is a noetherian projective generator of A by Example
1.2.1.

(A1). The pro-p Iwahori–Hecke algebra 𝐻 = EndC (𝑃)op is finitely generated as a module over its
centre by [Vig]; see also [OS18] Corrollary 3.4 and Remark 3.5.

(A2). Since 𝑝 ≥ 5, the group I has no elements of order p and therefore has finite p-cohomological
dimension equal to 3, the dimension of I as a p-adic Lie group. Using Frobenius reciprocity, we see that
for all V in C,

Ext 𝑗C (𝑃,𝑉) = Ext 𝑗𝐺 (ind𝐺𝐼 , 𝑉) = Ext 𝑗𝐼 (𝑘,𝑉) = 𝐻 𝑗 (𝐼, 𝑉) = 0 for all 𝑗 > 3.

(A3). In view of Remark 3.7.5 below, we may replace (A3) by the weaker assumption that 𝑍 ⊗𝑘 𝑍 is
noetherian because C happens to be a k-linear category. Proposition 4.1.5 and Equation (11) imply that
Z is finitely generated as a k-algebra. Hence, 𝑍 ⊗𝑘 𝑍 is noetherian, by Hilbert’s basis theorem. �

The paper [DEG] considers, for the group 𝐺 = 𝐺𝐿2 (Q𝑝), the full subcategory Mod𝑘,𝜁 (𝐺) of those
representations in Mod𝑘 (𝐺) which have a fixed central character 𝜁 . They associate with this subcategory
a scheme X which is also a chain of projective lines. This scheme is definitively the analogue of a
connected component of our quotient space Ξ/R in this situation. But the idea of [DEG] behind X
is completely different: X is viewed as a kind of moduli space of two-dimensional semisimple Galois
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representations modulo p. From this point of view, the relation between X and the representation theory
of G comes from Breuil’s semisimple Langlands correspondence modulo p. Still another approach to the
space X is given in [PS]. The paper [DEG] also develops a localisation theory for the category Mod𝑘,𝜁 (𝐺)
and shows that the closed points of X parameterize the blocks of the Krull-dimension 0 subcategory of
Mod𝑘,𝜁 (𝐺). We emphasize that in the present paper we work entirely on the representation theoretic
side of the full category Mod𝑘 (𝐺), and our quotient space Ξ/R arises from the nonvanishing (and the
structure) of universal Ext-groups. We therefore like to think that these approaches complement each
other in an interesting way.

2. Basic facts about the category Mod𝑘 (𝐺)

We fix a field k of characteristic 𝑝 > 0. For any locally compact and totally disconnected group
G, we denote by Mod𝑘 (G) the abelian category of smooth G-representations on k-vector spaces. Let
𝐺 = 𝑆𝐿2 (Q𝑝). We fix the pro-p Iwahori subgroup 𝐼 ⊆ 𝑆𝐿2 (Z𝑝) of all matrices which are upper
triangular unipotent mod p.

2.1. Locally noetherian

Let Mod𝐼𝑘 (𝐺) denote the full subcategory of all V in Mod𝑘 (𝐺) which are generated by their pro-p
Iwahori fixed vectors 𝑉 𝐼 . Write 𝐻 := End𝑘 [𝐺 ] (𝑘 [𝐺/𝐼])op.

Theorem 2.1.1. The functor

Mod𝐼𝑘 (𝐺)
�−−→ Mod(𝐻)

𝑉 ↦−→ 𝑉 𝐼

is an equivalence of categories with quasi-inverse 𝑀 ↦−→ 𝑘 [𝐺/𝐼] ⊗𝐻 𝑀 . Moreover, 𝑘 [𝐺/𝐼] is projective
and faithfully flat as an H-module.

Proof. [Koz] and [OS18] Proposition 3.25 and its proof. �

Lemma 2.1.2. Mod𝐼𝑘 (𝐺) is an abelian subcategory of Mod𝑘 (𝐺) closed under the formation of subob-
jects, quotient objects and arbitrary colimits.

Proof. Clearly, Mod𝐼𝑘 (𝐺) is closed under the formation of arbitrary direct sums. Let 0→ 𝑉0 → 𝑉1 →
𝑉2 → 0 be an exact sequence in Mod𝑘 (𝐺) such that 𝑉1 lies in Mod𝐼𝑘 (𝐺). Obviously, then also 𝑉2 lies
in Mod𝐼𝑘 (𝐺). For 𝑉0, we consider the commutative diagram

0 �� 𝑘 [𝐺/𝐼] ⊗𝐻 𝑉 𝐼0

��

�� 𝑘 [𝐺/𝐼] ⊗𝐻 𝑉 𝐼1

�

��

�� 𝑘 [𝐺/𝐼] ⊗𝐻 𝑉 𝐼2

�

��
0 �� 𝑉0 �� 𝑉1 �� 𝑉2 �� 0.

The upper horizontal row is exact by the left exactness of the functor (−)𝐼 and the fact that 𝑘 [𝐺/𝐼]
is flat as a (right) H-module. By the category equivalence in Theorem 2.1.1, the middle and right
perpendicular arrows are isomorphisms. Hence, the left one is an isomorphism as well. This shows that
𝑉0 lies in Mod𝐼𝑘 (𝐺). �

The k-algebra H is finitely generated as a module over its centre, which is a finitely generated k-
algebra ([Vig] or, in an explicit form, [OS18] Corollary 3.4 and Remark 3.5), and hence noetherian.
Therefore, the abelian category Mod(𝐻) is locally noetherian Grothendieck.
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Lemma 2.1.3. LetG be any locally compact and totally disconnected group with an open pro-p subgroup
J. Any finitely generated G-representation V in Mod𝑘 (G) has a finite filtration {0} ⊂ 𝑉1 ⊂ . . . ⊂ 𝑉ℓ = 𝑉
by subrepresentations such that each subquotient 𝑉𝑖/𝑉𝑖−1, for 0 < 𝑖 ≤ ℓ, is generated by finitely many
J-fixed vectors.

Proof. It suffices to consider the case where V is generated by a single vector v. We can then find an
open normal subgroup 𝑁 ⊆ 𝐽 such that N fixes v. Then V is a quotient of the G-representation 𝑘 [G/𝑁].
Hence, it actually suffices to consider the case 𝑉 = 𝑘 [G/𝑁]. In V, we then have the J-subrepresentation
𝑘 [𝐽/𝑁]. Let 𝔪 denote the augmentation ideal of the ring 𝑘 [𝐽/𝑁]. Since 𝐽/𝑁 is a finite p-group, we find
an integer ℓ ≥ 0 such that 𝔪ℓ = 0. Observe that J acts trivially on each subquotient 𝔪𝑖/𝔪𝑖+1. We now
define 𝑉𝑖 ⊆ 𝑉 as the G-subrepresentation generated by 𝔪ℓ−𝑖 . The subquotient 𝑉𝑖/𝑉𝑖−1 then is generated
by the image of 𝔪ℓ−𝑖/𝔪 (ℓ−𝑖)+1, which is contained in (𝑉𝑖/𝑉𝑖−1)𝐽 . �

Proposition 2.1.4. The abelian category Mod𝑘 (𝐺) is locally noetherian.

Proof. By Lemma 1(iv) [Sch], Mod𝑘 (𝐺) is a Grothendieck category. We have to show that any finitely
generated G-representation V in Mod𝑘 (𝐺) is noetherian. Lemma 2.1.3 reduces us to the case that V
is generated by finitely many I-fixed vectors. According to Lemma 2.1.2, any increasing chain of G-
subrepresentations of V already lies in Mod𝐼𝑘 (𝐺). By Theorem 2.1.1, it therefore corresponds to a chain
in the finitely generated H-module 𝑉 𝐼 . Hence, it must become stationary. �

The exact inclusion functor Mod𝐼𝑘 (𝐺) ⊆ Mod𝑘 (𝐺) is left adjoint to the left exact functor

Mod𝑘 (𝐺) −→ Mod𝐼𝑘 (𝐺)
𝑉 ↦−→ 𝑉 (𝐼) := 𝐺-subrepresentation of 𝑉 generated by 𝑉 𝐼 (� 𝑘 [𝐺/𝐼] ⊗𝐻 𝑉 𝐼 ).

Lemma 2.1.5. The functor 𝑉 ↦→ 𝑉 (𝐼)
a) restricts to the identity functor on Mod𝐼𝑘 (𝐺),
b) respects nonzero objects,
c) respects injective objects and
d) commutes with arbitrary filtered colimits.

Proof. a) is obvious. b) holds since I is pro-p. c) is a consequence of the functor being right adjoint
to a (left) exact functor. For d), let 𝑉 = lim−−→ 𝑗

𝑉 𝑗 be a filtered colimit in Mod𝑘 (𝐺). Since filtered
colimits are exact in the Grothendieck category Mod𝑘 (𝐺), we have the inclusion lim−−→ 𝑗

𝑉 𝑗 (𝐼) ⊆ 𝑉 (𝐼).
But 𝑉 𝐼 = lim−−→ 𝑗

𝑉 𝐼𝑗 . Hence, this inclusion is an equality. �

2.2. Krull dimension

We briefly recall Gabriel’s notion of a Krull dimension for arbitrary Grothendieck categories C. Gabriel’s
dimension filtration of C is a filtration by localising subcategories C𝛼 of C indexed by ordinals 𝛼. His
convention is that C−1 is the subcategory of all zero objects of C and C0 is the smallest localising
subcategory containing all objects of finite length. The C𝛼 then are defined successively as follows. If
𝛼 = 𝛽 + 1, then C𝛼 is the preimage of (C/C𝛽)0 under the quotient functor 𝑞C𝛽 : C → C/C𝛽; if 𝛼 is a
limit ordinal, then C𝛼 is the smallest localising subcategory containing all C𝛽 for 𝛽 < 𝛼. This process
terminates as soon as C/C𝛼 has no simple objects. But by [Gab] Proposition 7 on p. 387, the latter
implies that C𝛼 must be equal to C. The Krull dimension 𝜅(C) of C can now be defined as the smallest
𝛼 such that C = C𝛼. Similarly, the Krull dimension 𝜅(𝑌 ) of an object Y in C is defined to be the smallest
𝛼 such that Y lies in C𝛼. Correspondingly, the set Sp(C) of isomorphism classes of indecomposable
injective objects in C admits a stratification

Sp(C) = �
⋃

𝛼<𝜅 (C)
Sp𝛼 (C)
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by the subsets Sp𝛼 (C) of all [𝐸] ∈ Sp(C) such that 𝑞C𝛼 (𝐸) contains a simple object ([Gab] p. 383). In
general, it is not possible to read off the Krull dimension 𝜅(𝐸) of an [𝐸] ∈ Sp𝛼 (C) from the 𝛼.

Remark 2.2.1. Let 𝛼 < 𝜅(C) be an ordinal such that C𝛼+1 is a stable localising subcategory; then
𝜅(𝐸) = 𝛼 + 1 for any [𝐸] ∈ Sp𝛼 (C).

Proof. By our assumption, E is C𝛼-closed and contains a nonzero subobject S lying in C𝛼+1 (cf. [Gab]
p. 383). Since E is an essential extension of any of its nonzero subobjects (cf. [Gab] Proposition 11 on
p. 361) it follows from the stability of C𝛼+1 that E lies in C𝛼+1. �

Remark 2.2.2. ([Gab] Proposition 7 on p. 387) Suppose that C is locally noetherian. Then C has a Krull
dimension and, for any nonlimit ordinal 𝛼, the category C𝛼/C𝛼−1 is locally finite.

For the convenience of the reader, we point out the following elementary consequences of the fact
that the subcategories C𝛼 are localising:

– If 0→ 𝑈1 → 𝑈2 → 𝑈3 → 0 is a short exact sequence in C, then

𝜅(𝑈2) = sup(𝜅(𝑈1), 𝜅(𝑈3)).

– If U in C is the inductive limit of a family of subobjects𝑈𝑖 , then 𝜅(𝑈) = sup𝑖 𝜅(𝑈𝑖). In particular, for
any U, we have 𝜅(𝑈) = sup𝑖 𝜅(𝑈𝑖), where the𝑈𝑖 run over all noetherian subobjects of U.

In [MCR] Chapter 6, the notion of Krull dimension for the category C = Mod(𝑅) of modules over a
noetherian ring R is introduced using posets. By loc. cit. Lemmas 6.2.4 and 6.2.17, it also has the above
two properties. Therefore, it follows, for example, from [GR] Proposition 2.3 (beware that this reference
shifts the Gabriel definition by 1) that these two notions of Krull dimension coincide for noetherian
rings R.

Proposition 2.2.3. The categories Mod𝑘 (𝐺) and Mod(𝐻) have Krull dimension one.

Proof. The computation of 𝑍 (𝐻) in [OS18] §3.2.4 (together with [MCR] Corollary 6.4.8) shows that
𝑍 (𝐻) has Krull dimension one. By [OS18] Corollary 3.4, the centre 𝑍 (𝐻) contains a polynomial ring
𝑘 [𝜁] over which H is a finitely generated free module. Using [MCR] Corollary 6.5.3, it then follows
that H has Krull dimension one as well. Hence, Mod𝐼𝑘 (𝐺) � Mod(𝐻) has Krull dimension one. By the
proof of Lemma 2.1.2, the subcategory Mod𝐼𝑘 (𝐺) is closed under the passage to subobjects in Mod𝑘 (𝐺).
Therefore, the Krull dimensions of an object in Mod𝐼𝑘 (𝐺) when viewed in Mod𝐼𝑘 (𝐺) or in Mod𝑘 (𝐺),
coincide.

Since the subcategory Mod𝑘 (𝐺)1 is closed under extensions, it follows from Lemma 2.1.3 that every
finitely generated representation lies in Mod𝑘 (𝐺)1. The assertion about Mod𝑘 (𝐺) then is immediate
from the fact that Mod𝑘 (𝐺)1 also is closed under inductive limits. �

3. Thickenings

It will be useful to axiomatize the situation in the previous section.

3.1. Definitions

For this, we fix a locally noetherian Grothendieck category C together with a full abelian subcategory
A of C.

Definition 3.1.1. The category C is called a thickening of A if:

a) A is closed under the formation of subobjects, quotient objects and arbitrary colimits in C;
b) the inclusion functor A ⊆ C has a left exact right adjoint functor 𝑟 = 𝑟C,A : C → A such that:

- the functor 𝑟 : C 𝑟−→ A ⊆−→ C is a subfunctor of the identity functor idC ,
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- 𝑟 |A = idA,
- r preserves nonzero objects and
- r commutes with arbitrary filtered colimits;

c) every noetherian object V in C has a finite filtration 0 = 𝑉0 ⊆ 𝑉1 ⊆ . . . ⊆ 𝑉𝑚 = 𝑉 such that all
subquotients 𝑉 𝑗/𝑉 𝑗−1, for 1 ≤ 𝑗 ≤ 𝑚, lie in A.

In the following, we fix an A as in the above definition. Note that A is a strictly full subcategory. For
any V in C, the subobject 𝑟 (𝑉) is the largest subobject of V which lies in A. The functor r in fact gives
rise to a whole sequence of subfunctors 𝑟 𝑗 : C → C, for 𝑗 ≥ 0, of the identity functor idC which are
defined inductively as follows. We define

𝑟0 : C 𝑟−→ A ⊆−→ C and 𝑟 𝑗 (𝑉)/𝑟 𝑗−1(𝑉) = 𝑟0(𝑉/𝑟 𝑗−1 (𝑉)) for 𝑗 ≥ 1.

Obviously, we have, for any V in C, the increasing filtration by subobjects

𝑟 (𝑉) ⊆ 𝑟1(𝑉) ⊆ . . . ⊆ 𝑟 𝑗 (𝑉) ⊆ . . . ⊆ 𝑉.

Lemma 3.1.2. For any 𝑗 ≥ 0, the functor 𝑟 𝑗 has the following properties:

a) 𝑟 𝑗 is left exact;
b) 𝑟 𝑗 ◦ 𝑟𝑖 = 𝑟𝑖 ◦ 𝑟 𝑗 = 𝑟 𝑗 for any 𝑖 ≥ 𝑗;
c) 𝑟 𝑗 preserves filtered unions of subobjects.

Proof. In [Ste] VI§1, the functor 𝑟0 is called a left exact idempotent preradical of C and the asserted
properties of the 𝑟 𝑗 can be found in the Exercises 1 and 2 of that Chapter VI. �

Correspondingly, we introduce, for any 𝑗 ≥ 0, the strictly full subcategory

A 𝑗 := all objects 𝑉 such that 𝑟 𝑗 (𝑉) = 𝑉

of C. We have A0 = A, and A 𝑗 is a subcategory of A 𝑗+1. Each functor 𝑟 𝑗 may be viewed as a functor
𝑟 𝑗 : C → A 𝑗 .

Lemma 3.1.3. For any 𝑗 ≥ 0, we have:

a) A 𝑗 is an abelian subcategory of C closed under the formation of subobjects, quotient objects and
arbitrary colimits in C;

b) 𝑟 𝑗 : C → A 𝑗 is right adjoint to the inclusion functor A 𝑗 ⊆ C;
c) 𝑟 𝑗 |A 𝑗 = idA 𝑗 ;
d) 𝑟 𝑗 preserves nonzero objects;
e) 𝑟 𝑗 commutes with arbitrary filtered colimits;
f) any object V in A 𝑗 has the finite filtration 0 ⊆ 𝑟0 (𝑉) ⊆ 𝑟1 (𝑉) ⊆ . . . ⊆ 𝑟 𝑗 (𝑉) = 𝑉 whose subquotients
𝑟𝑖 (𝑉)/𝑟𝑖−1(𝑉) all lie in A.

Proof. a) follows from [Ste] Propositions VI.1.2 and VI.1.7. For b) we observe that for any homomor-
phism 𝑓 : 𝑉0 → 𝑉1 in C we have 𝑟 𝑗 ( 𝑓 ) = 𝑓 |𝑟 𝑗 (𝑉0). c), d) and f) hold by construction. e) We proceed
by induction with respect to j. For 𝑗 = 0, the claim is part of the Definition 3.1.1. Now, assume that the
claim holds for some j. Let 𝑉 = lim−−→𝑖

𝑉𝑖 be a filtered colimit in C. We then have

𝑟 𝑗+1(𝑉)/𝑟 𝑗 (𝑉) = 𝑟0 (𝑉/𝑟 𝑗 (𝑉)) = 𝑟0(lim−−→
𝑖

𝑉𝑖/𝑟 𝑗 (lim−−→
𝑖

𝑉𝑖)) = 𝑟0(lim−−→
𝑖

𝑉𝑖/lim−−→
𝑖

𝑟 𝑗 (𝑉𝑖))

= 𝑟0 (lim−−→
𝑖

(𝑉𝑖/𝑟 𝑗 (𝑉𝑖))) = lim−−→
𝑖

𝑟0(𝑉𝑖/𝑟 𝑗 (𝑉𝑖)) = lim−−→
𝑖

(𝑟 𝑗+1 (𝑉𝑖)/𝑟 𝑗 (𝑉𝑖))

= lim−−→
𝑖

𝑟 𝑗+1 (𝑉𝑖)/lim−−→
𝑖

𝑟 𝑗 (𝑉𝑖) = (lim−−→
𝑖

𝑟 𝑗+1 (𝑉𝑖))/𝑟 𝑗 (𝑉) ,
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where we use for Equations 4 and 7 that filtered colimits in C are exact. It follows that 𝑟 𝑗+1 (𝑉) =
lim−−→𝑖

𝑟 𝑗+1 (𝑉𝑖). �

Lemma 3.1.4. Let 0 → 𝑋 → 𝑌 → 𝑍 → 0 be a short exact sequence in C such that X lies in A 𝑗 for
some 𝑗 ≥ 0 and Z lies in A; then Y lies in A 𝑗+1.

Proof. Since 𝑟 𝑗 is left exact by Lemma 3.1.2.a, we have the commutative exact diagram

0

��

0

��
0 �� 𝑋 = 𝑟 𝑗 (𝑋)

��

�� 𝑋

��

�� 0

��

�� 0

0 �� 𝑟 𝑗 (𝑌 ) �� 𝑌

��

�� 𝑌/𝑟 𝑗 (𝑌 ) �� 0

𝑍

��

���
�

�
�

�

0,

which exhibits𝑌/𝑟 𝑗 (𝑌 ) as a quotient object of Z. Since A is closed under quotient objects it follows that
𝑟0 (𝑌/𝑟 𝑗 (𝑌 )) = 𝑌/𝑟 𝑗 (𝑌 ). On the other hand, by construction we have 𝑟 𝑗+1 (𝑌 )/𝑟 𝑗 (𝑌 ) = 𝑟0(𝑌/𝑟 𝑗 (𝑌 )). It
follows that 𝑟 𝑗+1 (𝑌 ) = 𝑌 . �

Lemma 3.1.5. For any V in C, we have 𝑉 =
⋃
𝑗≥0 𝑟 𝑗 (𝑉).

Proof. Write V as a filtered union of noetherian subobjects. Using Lemma 3.1.2.c, we see that it suffices
to prove the assertion for a noetherian V. In this case, however, it follows from Definition 3.1.1.c and an
iterated application of Lemma 3.1.4 that 𝑉 = 𝑟 𝑗 (𝑉) for sufficiently large j. �

Proposition 3.1.6. A 𝑗 , for any 𝑗 ≥ 0, is a locally noetherian Grothendieck category.

Proof. By [BP] Lemma 3.4, the category A 𝑗 is Grothendieck. That it is locally noetherian is clear. �

Remark 3.1.7. Let V be an object in A 𝑗 for some 𝑗 ≥ 0; then the Krull dimensions of V viewed in A 𝑗

and viewed in C coincide.

Proof. This is immediate from A 𝑗 being closed under the passage to subobjects in C. �

3.2. A spectral sequence

The Ext-groups in C and A are related by the following spectral sequence.

Proposition 3.2.1. For objects A in A and V in C, we have the Grothendieck spectral sequence

Ext𝑖A(𝐴, 𝑅
𝑗𝑟 (𝑉)) =⇒ Ext𝑖+ 𝑗C (𝐴,𝑉).

Proof. We have the adjunction HomA (𝐴, 𝑟 (𝑉)) = HomC (𝐴,𝑉). Since r, being right adjoint to a (left)
exact functor, preserves injective objects, this equation extends to the asserted composed functor spectral
sequence. �
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Corollary 3.2.2. Suppose that P is a projective object in A. For any object V in C and any 𝑗 ≥ 0, we
then have

Ext 𝑗C (𝑃,𝑉) = HomA (𝑃, 𝑅 𝑗𝑟 (𝑉)).

3.3. Injective spectra

We first recall some standard notations. For any object Y in a locally noetherian Grothendieck category
D a choice of injective hull of Y is denoted by 𝐸D (𝑌 ) or simply 𝐸 (𝑌 ). The injective spectrum Sp(D)
is the collection of isomorphism classes [𝑌 ] of indecomposable injective objects Y of D; it is a set, for
example, by [Her] p. 523.

In the following, we keep the setting of a thickening C of A.

Lemma 3.3.1. For any V in C, we have:

a) The inclusion 𝑟 (𝑉) ⊆ 𝑉 is an essential extension. In particular, if V is injective, then V is an injective
hull of 𝑟 (𝑉).

b) If V is injective in A, then 𝑉 � 𝑟 (𝐸C (𝑉)).
c) If V is injective in C, then V is indecomposable if and only if 𝑟 (𝑉) is indecomposable.

Proof. a) Let 𝑈 ⊆ 𝑉 be a nonzero subobject. Since r preserves nonzero objects, we then have 0 ≠
𝑟 (𝑈) ⊆ 𝑟 (𝑉) and hence 𝑈 ∩ 𝑟 (𝑉) ≠ 0.

b) We obviously have 𝑉 = 𝑟 (𝑉) ⊆ 𝑟 (𝐸C (𝑉)) ⊆ 𝐸C (𝑉). Since r, as a right adjoint of a (left) exact
functor, preserves injective objects, both terms in the essential extension 𝑉 = 𝑟 (𝑉) ⊆ 𝑟 (𝐸C (𝑉)) are
injective in A. Hence, we must have equality.

c) Suppose that 𝑟 (𝑉) = 𝑈1 ⊕ 𝑈2 with 𝑈𝑖 ≠ 0 (and necessarily lying in A). Using [Ste] Proposition
V.2.6, we see that V, being an injective hull of 𝑟 (𝑉) by a), is isomorphic to the direct sum of injective
hulls of 𝑈1 and 𝑈2 and hence is decomposable. On the other hand, if 𝑉 = 𝑉1 ⊕ 𝑉2 with 𝑉𝑖 ≠ 0, then
𝑟 (𝑉) = 𝑟 (𝑉1) ⊕ 𝑟 (𝑉2) with 𝑟 (𝑉𝑖) ≠ 0. �

The above lemma implies that the map

Sp(C) �−−→ Sp(A)
[𝐸] ↦−→ 𝑟 ([𝐸]) := [𝑟 (𝐸)]

is a bijection with inverse [𝑈] ↦−→ [𝐸C (𝑈)]. In fact, because of Lemma 3.1.3 all of the above remains
valid for each functor 𝑟 𝑗 . Hence, we have the bijections

Sp(C) �−−→ Sp(A 𝑗 )
�−−→ Sp(A) (2)

[𝐸] ↦−→ [𝑟 𝑗 (𝐸)] ↦−→ [𝑟 (𝐸)] .

3.4. Localising subcategories

We recall that a full subcategory L of a locally noetherian Grothendieck category D is called localising
if it is closed under the formation of subobjects, quotient objects, extensions and arbitrary direct sums.
In particular, it is strictly full and contains the zero object (as the empty direct sum). It will be technically
useful to also recall the following fact. Let D𝑛𝑜𝑒𝑡ℎ denote the full subcategory of all noetherian objects
in D.
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Proposition 3.4.1. The map

collection of all localising �−−→ collection of all Serre

subcategories ofD subcategories of D𝑛𝑜𝑒𝑡ℎ

L ↦−→ L ∩D𝑛𝑜𝑒𝑡ℎ

is a bijection; its inverse sends a Serre subcategory S to the smallest localising subcategory 〈S〉 of D
which contains S; equivalently, 〈S〉 is the full subcategory of all filtered colimits of objects in S .

Proof. [Her] Theorem 2.8. �

Lemma 3.4.2. If L is a localising subcategory of C, then A ∩ L is localising in A.

Proof. Each of the categories A and L is closed under subobjects, quotient objects and arbitrary direct
sums. Therefore, the same holds forA∩L. It remains to consider extensions. Let 0→ 𝑋 → 𝑌 → 𝑍 → 0
be a short exact sequence in A such that X and Z lie in L. Then Y must lie in L and hence in A∩L. �

Proposition 3.4.3. The map

collection of all localising �−−→ collection of all localising
subcategories of C subcategories of A

L ↦−→ A ∩ L

is a bijection; its inverse sends a localising subcategory K of A to the smallest localising subcategory
〈K〉 of C which contains K.

Proof. We obviously haveA𝑛𝑜𝑒𝑡ℎ = A∩C𝑛𝑜𝑒𝑡ℎ . Hence, Proposition 3.4.1 reduces the asserted bijectivity
to the bijectivity of the map

collection of all Serre �−−→ collection of all Serre
subcategories of Cnoeth subcategories of Anoeth

S ↦−→ A ∩ S .

But it follows from Definition 3.1.1.c that any such S is the smallest Serre subcategory of C𝑛𝑜𝑒𝑡ℎ which
contains A ∩ S . On the other hand, let T be a Serre subcategory of A𝑛𝑜𝑒𝑡ℎ . We define S to be the
full subcategory of C𝑛𝑜𝑒𝑡ℎ whose objects V have a finite filtration 0 = 𝑉0 ⊆ 𝑉1 ⊆ . . . ⊆ 𝑉𝑚 = 𝑉 with
𝑉 𝑗/𝑉 𝑗−1 in T for any 1 ≤ 𝑗 ≤ 𝑚. It is straightforward to check that S is a Serre subcategory of C𝑛𝑜𝑒𝑡ℎ
and that A ∩ S = T . �

The above Proposition 3.4.3, of course, holds true correspondingly with A replaced with A 𝑗 .
For any localising subcategory L of a locally noetherian Grothendieck category D one defines the

subset

𝐴(L) := {[𝐸] ∈ Sp(D) : HomD (𝑉, 𝐸) = 0 for any 𝑉 ∈ ob(L)}

of Sp(D). These subsets 𝐴(L) form the closed subsets of a topology on Sp(D) which is called the
Ziegler topology (cf. [Her] Theorem 3.4). In fact, by Proposition 3.4.1 and [Her] Theorem 3.8, the map

collection of all localising �−−→ set of all Ziegler-closed (3)
subcategories ofD subsets of Sp(D)

L ↦−→ 𝐴(L)
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is an inclusion reversing bijection. This means that the Ziegler closed subsets of Sp(D) classify the
Serre subcategories of D𝑛𝑜𝑒𝑡ℎ as well as the localising subcategories of D. It also implies that L can be
reconstructed from 𝐴(L) by

ob(L) = {𝑉 ∈ ob(D) : HomD (𝑉, 𝐸) = 0 for all [𝐸] ∈ 𝐴(L)}.

Corollary 3.4.4. The maps Sp(C) �−−→ Sp(A 𝑗 )
�−−→ Sp(A) in Equation +(2) are homeomorphisms for

the Ziegler topologies.

Proof. Using [Her] Proposition 3.2 and Corollary 3.5, we see that Definition 3.1.1.c implies that the sets

𝑂C (𝑈) := {[𝐸] ∈ Sp(C) : HomC (𝑈, 𝐸) ≠ 0},
resp. 𝑂A (𝑈) := {[𝑟 (𝐸)] ∈ Sp(A) : HomA(𝑈, 𝑟 (𝐸)) ≠ 0},

for 𝑈 ∈ ob(A), form a base for the Ziegler-open subsets of Sp(C), resp. Sp(A). But, for such U, we
have HomC (𝑈, 𝐸) = HomA(𝑈, 𝑟 (𝐸)) since r is right adjoint to the inclusion functor. �

Later on, another topology on Sp(D) will be more important for our purposes.

Proposition 3.4.5. For a localising subcategory L of D, the following are equivalent:

a) there is a noetherian object C in D such that L is the smallest localising subcategory containing C;
b) there is a noetherian object C in D such that

𝐴(L) = {[𝐸] ∈ Sp(D) : HomD (𝐶, 𝐸) = 0};

c) the Ziegler open subset Sp(D) \ 𝐴(L) is quasi-compact.

Proof. For the equivalence of a. and b. we consider more generally an arbitrary object of D, and we
let 〈𝐶〉 denote the smallest localising subcategory containing C. Let E be any injective object in D. If
HomD (−, 𝐸) vanishes on 〈𝐶〉, then obviously HomD (𝐶, 𝐸) = 0. But the injectivity of E easily implies
that the converse holds as well. It follows that

𝐴(〈𝐶〉) = {[𝐸] ∈ Sp(D) : HomD (𝐶, 𝐸) = 0}.

For the equivalence of b. and c., see [Her] Corollary 3.9. �

The topology on Sp(D) which has as a base of open subsets the complements of quasi-compact
Ziegler-open subsets is called the Gabriel–Zariski topology.

Corollary 3.4.6. The maps Sp(C) �−−→ Sp(A 𝑗 )
�−−→ Sp(A) in Equation (2) are homeomorphisms for

the Gabriel–Zariski topologies.

3.5. Stability

We recall that a localising subcategory of a locally noetherian Grothendieck category D is called stable
if it is closed under the passage to essential extensions.

Lemma 3.5.1. For any localising subcategory L of D the following are equivalent:

a) L is stable;
b) any indecomposable injective object of D either lies in L or has no nonzero subobject lying in L.

Proof. We argue similarly as in [Gol] Proposition 11.3.
𝑎) =⇒ 𝑏): Let E be an indecomposable injective object in D, and let 𝑡L(𝐸) denote the largest

subobject of E contained in L. Suppose that 𝑡L(𝐸) ≠ 0. Then E is an injective hull of 𝑡 (𝐸) and hence,
by stability, is contained in L.
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𝑏) =⇒ 𝑎): We write an injective hull 𝐸 (𝑉) of an object V lying in L as a direct sum 𝐸 (𝑉) = ⊕𝑖∈𝐼𝐸𝑖
of indecomposable injective objects 𝐸𝑖 . Since 𝐸𝑖 ∩ 𝑉 ≠ 0 lies in L for any 𝑖 ∈ 𝐼, we see that all 𝐸𝑖 and
hence 𝐸 (𝑉) lie in L. �

Corollary 3.5.2. Let L be a stable localising subcategory of D; then

𝐴(L) = {[𝐸] ∈ Sp(D) : 𝐸 ∉ ob(L)}.

The following is a straightforward generalization of [Lou] Proposition 4.

Lemma 3.5.3. For a subset 𝐴 ⊆ Sp(D), the following are equivalent:

a) 𝐴 = 𝐴(L) for a stable localising subcategory L of D;
b) if [𝐸] ∈ Sp(D) satisfies HomD (𝐸, 𝐸 ′) ≠ 0 for some [𝐸 ′] ∈ 𝐴, then [𝐸] ∈ 𝐴.

Proof. 𝑎) =⇒ 𝑏): Let [𝐸 ′] ∈ 𝐴(L) such that HomD (𝐸, 𝐸 ′) ≠ 0. Then E does not lie in L. Since L is
stable, Lemma 3.5.1 applies and tells us that E does not have any nonzero subobject lying in L. Hence,
[𝐸] ∈ 𝐴(L) = 𝐴.
𝑏) =⇒ 𝑎): Let L be the localising subcategory of D cogenerated by the 𝐸 ′ for [𝐸 ′] ∈ 𝐴. This

means that L is the full subcategory of those objects V in D which satisfy HomD (𝑉, 𝐸 ′) = 0 for any
[𝐸 ′] ∈ 𝐴. It is immediate that 𝐴 ⊆ 𝐴(L). Consider any [𝐸] ∈ 𝐴(L). Then E cannot lie in L. Hence,
there must exist an [𝐸 ′] ∈ 𝐴 such that HomD (𝐸, 𝐸 ′) ≠ 0. It follows from (b) that [𝐸] ∈ 𝐴. This shows
that 𝐴 = 𝐴(L). To establish that L is stable, we use Lemma 3.5.1. We have just seen that the E which
do not lie in L must have [𝐸] ∈ 𝐴(L). By the very definition of 𝐴(L), such E do not have a nonzero
subobject lying in L. �

A subset 𝐴 ⊆ Sp(D) will be called stable, resp. stable-open, if it is of the form 𝐴 = 𝐴(L) for some
stable localising subcategory L of D, resp. if it is stable and open for the Gabriel–Zariski topology. It
is clear, for example, from Lemma 3.5.3, that arbitrary intersections and unions of stable subsets are
stable again. Therefore, the stable, resp. stable-open, subsets are the open subsets for a topology which
we call the stable, resp. stable Zariski, topology of Sp(D).

Corollary 3.5.4. The bijections Sp(C) �−−→ Sp(A 𝑗 )
�−−→ Sp(A) in Equation (2) respect stable subsets;

in particular, the inverse maps are continuous for the stable topologies.

Proof. It suffices to consider the map Sp(C) → Sp(A) sending [𝐸] to [𝑟 (𝐸)]. Let 𝑆 ⊆ Sp(C) be any
stable subset and [𝑟 (𝐸 ′)] be any point in the image of S. Now, suppose that we have [𝑈] ∈ Sp(A) such
that HomA (𝑈, 𝑟 (𝐸 ′)) ≠ 0. Then HomC (𝑈, 𝐸 ′) ≠ 0 and hence HomC (𝐸C (𝑈), 𝐸 ′) ≠ 0. Using Lemma
3.5.3, we deduce that [𝐸 (𝑈)] ∈ 𝑆. But𝑈 � 𝑟 (𝐸C (𝑈)). It follows that [𝑈] lies in the image of S. Using
again Lemma 3.5.3, we conclude that the image of S is stable. �

Lemma 3.5.5. Suppose that L is a stable localising subcategory of C; then the right derived functors
𝑅 𝑗𝑟 of r, for any 𝑗 ≥ 0, map L to A ∩ L.

Proof. Let V be any object in L. Since L is stable an injective hull 𝐸 (𝑉) of V in C lies already in L.
Hence, we find an injective resolution 𝑉 �−→ 𝐼• of V in C all of whose terms lie in L. The values 𝑅 𝑗𝑟 (𝑉)
of the right derived functors in question are the cohomology objects of the complex 𝑟 (𝐼•). On the other
hand, Definition 3.1.1.b easily implies that r maps L to A ∩ L. It follows that the complex 𝑟 (𝐼•) and
then also its cohomology objects lie in A ∩ L. �

For the rest of this section, we impose on our thickening C of A the additional condition that Ahas
a noetherian projective generator P. Note that P then also is noetherian as an object in C. We let
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𝐻 := EndA(𝑃)op = End(𝑃)op denote the opposite ring of the endomorphism ring of the generator P. In
this situation, one has the equivalence of categories

A �−−→ Mod(𝐻) (4)
𝐴 ↦−→ HomA(𝑃, 𝐴) = HomC (𝑃, 𝐴)

(cf. [Pop] Corollary 5.9.5). In fact, the Ext-functors Ext 𝑗C (𝑃,−) on C, for 𝑗 ≥ 0, can naturally be viewed
as functors

Ext 𝑗C (𝑃,−) : C −→ Mod(𝐻).

In particular, the natural isomorphism

Ext 𝑗 (𝑃,𝑉) = HomA(𝑃, 𝑅 𝑗𝑟 (𝑉)) for any 𝑉 in C and any 𝑗 ≥ 0 (5)

from Corollary 3.2.2 is an isomorphism of H-modules.

Lemma 3.5.6. Let A and V be objects in A.

a) There is a natural exact sequence of abelian groups

0→ Ext1A (𝐴,𝑉) → Ext1C (𝐴,𝑉)
𝜑𝐴,𝑉−−−−→ Hom𝐻 (HomA (𝑃, 𝐴),Ext1C (𝑃,𝑉)) → Ext2A(𝐴,𝑉).

b) If V is an injective object in A, then 𝜑𝐴,𝑉 is a natural isomorphism.

Proof. a) By Proposition 3.2.1, we have the convergent Grothendieck spectral sequence

Ext𝑖A(𝐴, 𝑅
𝑗𝑟 (𝑉)) ⇒ Ext𝑖+ 𝑗C (𝐴,𝑉).

The exact sequence of low degree terms is

0→ Ext1A(𝐴, 𝑟 (𝑉)) → Ext1C (𝐴,𝑉) → HomA(𝐴, 𝑅1𝑟 (𝑉)) → Ext2A (𝐴, 𝑟 (𝑉)).

Since V lies in A, we have 𝑟 (𝑉) = 𝑉 . Moreover, using Equation (5) for the second equality, we obtain

HomA(𝐴, 𝑅1𝑟 (𝑉)) = Hom𝐻 (HomA(𝑃, 𝐴),HomA(𝑃, 𝑅1𝑟 (𝑉)))
= Hom𝐻 (Hom(𝑃, 𝐴),Ext1C (𝑃,𝑉)).

b) Since V is injective, we have Ext1A (𝐴,𝑉) = Ext2A(𝐴,𝑉) = 0. �

Now, let L be a localising subcategory of C. Then L ∩A is a localising subcategory of A. We want
to investigate how the stability requirements for L and A∩L are related to each other. It is obvious that
if L is stable in C, then A∩L is stable in A. The converse is more subtle. We denote the corresponding
localising subcategory of Mod(𝐻) by

L𝐻 := essential image of A ∩ L in Mod(𝐻) under the functor HomA(𝑃,−).

Proposition 3.5.7. Suppose that A ∩L is stable in A and that Ext1C (𝑃,−) maps A ∩L to L𝐻 . Let V in
C be a nonzero object such that

a) 𝑉 = 𝑟1 (𝑉), and
b) 𝑟 (𝑉) is the largest subobject of V contained in L.

Then 𝑉 = 𝑟 (𝑉).
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Proof. We first note that we have 𝑟 (𝑉) ≠ 0 by Definition 3.1.1.b.
Let 𝐸C (𝑉) be an injective hull of V in C, and let 𝐸 = 𝑟1 (𝐸C (𝑉)). Then 𝑟 (𝐸) = 𝑟 (𝐸C (𝑉)) is an

injective object in A, and 𝑟 (𝑉) ⊆ 𝑟 (𝐸). In fact, we have the inclusions

𝑟 (𝐸) = �� 𝑟 (𝐸C (𝑉))

⊆
��

𝑟 (𝑉)

⊆

��

⊆ �� 𝑉
⊆ �� 𝐸C (𝑉).

By Lemma 3.3.1.a, the extension 𝑟 (𝑉) ⊆ 𝑉 is essential. Hence, the extension 𝑟 (𝑉) ⊆ 𝑟 (𝐸) is essential
as well. Since A∩L is stable in A and since 𝑟 (𝑉) lies A∩L by assumption b), we see that 𝑟 (𝐸) lies in
A ∩ L.

Now, because 𝑟1 is left exact, 𝑉 = 𝑟1 (𝑉) ⊆ 𝑟1 (𝐸C (𝑉)) = 𝐸 . Next, (𝑟 (𝐸) + 𝑉)/𝑟 (𝐸) � 𝑉/(𝑉 ∩
𝑟 (𝐸)) = 𝑉/𝑟 (𝑉) because r is left exact. Since 𝑟 (𝑉) is the largest subobject of V contained in L, we
see that 𝑉/𝑟 (𝑉) is L-torsion-free. Also, 𝑉 = 𝑟1(𝑉) means that 𝑉/𝑟 (𝑉) lies in A. We deduce that
(𝑟 (𝐸) +𝑉)/𝑟 (𝐸) � 𝑉/𝑟 (𝑉) lies in A and is L-torsion-free. Hence, we need to show that 𝑉 ⊆ 𝑟 (𝐸).

Consider any intermediate object 𝑟 (𝐸) ⊆ 𝑉 ′′ ⊆ 𝑉 ′ := 𝑟 (𝐸) + 𝑉 ⊆ 𝐸 in C. We obtain extension
classes 𝑒′ = [0 → 𝑟 (𝐸) → 𝑉 ′ → 𝑉 ′/𝑟 (𝐸) → 0] ∈ Ext1C (𝑉 ′/𝑟 (𝐸), 𝑟 (𝐸)) and analogously 𝑒′′ ∈
Ext1C (𝑉 ′′/𝑟 (𝐸), 𝑟 (𝐸)). Note that 𝑉 ′/𝑟 (𝐸), 𝑉 ′′/𝑟 (𝐸) and 𝑟 (𝐸) are objects in A with 𝑉 ′/𝑟 (𝐸) and
𝑉 ′′/𝑟 (𝐸) beingA∩L-torsion-free and 𝑟 (𝐸) being injective inA. Hence, Lemma 3.5.6 applies. We define
the H-modules 𝑁 ′′ := HomA (𝑃,𝑉 ′′/𝑟 (𝐸)) ⊆ 𝑁 ′ := HomA (𝑃,𝑉 ′/𝑟 (𝐸)) and obtain the commutative
diagram

Ext1C (𝑉 ′/𝑟 (𝐸), 𝑟 (𝐸))

⊆∗
��

𝜑′

�
�� Hom𝐻 (𝑁 ′,Ext1C (𝑃, 𝑟 (𝐸)))

res
��

Ext1C (𝑉 ′′/𝑟 (𝐸), 𝑟 (𝐸)) 𝜑′′
� �� Hom𝐻 (𝑁 ′′,Ext1C (𝑃, 𝑟 (𝐸)))

with horizontal isomorphisms. Obviously, the left perpendicular arrow maps 𝑒′ to 𝑒′′. Since 𝑟 (𝐸) lies
in A ∩ L the H-module Ext1C (𝑃, 𝑟 (𝐸)) lies in L𝐻 by our assumptions. We have the H-linear map
𝑓 ′ := 𝜑′(𝑒′) : 𝑁 ′ → Ext1C (𝑃, 𝑟 (𝐸)). Suppose now that 𝑁 ′ ≠ 0, and choose a nonzero element 𝑣 ∈ 𝑁 ′.
Let 𝐽 := Ann𝐻 ( 𝑓 ′(𝑣)) ⊆ 𝐻 be the annihilator left ideal. Then 𝐻/𝐽 � 𝐻 𝑓 ′(𝑣) lie in L𝐻 . We now
consider specifically the H-submodule 𝑁 ′′ := 𝐽𝑣 ⊆ 𝑁 ′. By the category equivalence, there is a unique
𝑉 ′′ as above such that 𝑁 ′′ = HomA(𝑃,𝑉 ′′/𝑟 (𝐸)). We first check that 𝑁 ′′ ≠ 0. Otherwise, we would
have 𝐽 ⊆ Ann𝐻 (𝑣) so that 𝐻/𝐽 surjects onto 𝐻𝑣 ⊆ 𝑁 ′, which implies that 𝐻𝑣 lies in L𝐻 . On the other
hand the modules 𝐻𝑣 ⊆ 𝑁 ′ are L𝐻 -torsion-free, which is a contradiction. Hence, 𝑁 ′′ ≠ 0. Now,

res(𝜑′(𝑒′)) (𝑁 ′′) = res( 𝑓 ′) (𝑁 ′′) = 𝑓 ′(𝑁 ′′) = 𝑓 ′(𝐽𝑣) = 𝐽 𝑓 ′(𝑣) = 0.

The commutativity of the above diagram then implies that the extension class 𝑒′′ = 0, that is, the short
exact sequence 0→ 𝑟 (𝐸) → 𝑉 ′′ → 𝑉 ′′/𝑟 (𝐸) → 0 in C splits. But then because 𝑉 ′′/𝑟 (𝐸) ≠ 0, we see
𝑟 (𝐸) is not essential in E, which contradicts Lemma 3.3.1.a. It follows that 𝑁 ′ must be zero, that is, that
𝑟 (𝐸) +𝑉 = 𝑟 (𝐸). �

Theorem 3.5.8. Suppose that A ∩ L is stable in A. Then the following are equivalent:

a) L is stable in C,
b) 𝑅 𝑗𝑟 maps L to A ∩ L for all 𝑗 ≥ 0,
c) Ext 𝑗C (𝑃,−) maps L to L𝐻 for all 𝑗 ≥ 0,
d) Ext1C (𝑃,−) maps L to L𝐻 ,
e) Ext1C (𝑃,−) maps A ∩ L to L𝐻 .
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Proof. a)⇒ b). This is Lemma 3.5.5.
b)⇒ c). This follows from Equation (5) and the definition of L𝐻 .
c)⇒ d)⇒ e). These are trivial.
e)⇒ a). Let E be an indecomposable injective object in C, and let Y be its largest subobject in L.

We suppose that 𝑌 ≠ 0 and will aim to show that 𝑌 = 𝐸 . Let 𝐸𝑛 := 𝑟𝑛 (𝐸) for 𝑛 ≥ 0, and note that
𝐸 =

∞⋃
𝑛=0

𝐸𝑛 by Lemma 3.1.5. Correspondingly, 𝑌 =
∞⋃
𝑛=0

𝑌𝑛 with 𝑌𝑛 := 𝑟𝑛 (𝑌 ), and note that 𝑌𝑛 = 𝑌 ∩ 𝑉𝑛
for all 𝑛 ≥ 0 because each 𝑟𝑛 is left exact.

Since Y is the largest subobject of E contained in L, 𝐸/𝑌 is L-torsion free. Hence, for any 𝑛 ≥ 0,
(𝐸𝑛 +𝑌 )/𝑌 is also L-torsion free. But (𝐸𝑛 +𝑌 )/𝑌 � 𝐸𝑛/(𝐸𝑛∩𝑌 ) = 𝐸𝑛/𝑌𝑛. Hence, for all 𝑛 ≥ 0, 𝐸𝑛/𝑌𝑛
is L-torsion-free, and 𝑌𝑛 is the largest subobject of 𝐸𝑛 contained in L.

With 𝑌 ≠ 0, also 𝑌0 = 𝑟 (𝑌 ) is nonzero. Since E is an indecomposable injective in C, it follows that
𝑌0 is essential in E.

Suppose for a contradiction that 𝑌 ≠ 𝐸 , and let n be minimal such that 𝑌𝑛 ≠ 𝐸𝑛. Now, 𝑌0 ⊆ 𝐸0 is an
essential extension in A with 𝑌0 lying in A∩L; since A∩L is stable in A, we see that 𝑌0 = 𝐸0. Hence,
𝑛 ≥ 1, and the minimality of n implies that 𝑌𝑛−1 = 𝐸𝑛−1 so that 𝐸𝑛−1 ⊆ 𝑌𝑛.

Now, consider the short exact sequence

0→ 𝑌𝑛/𝐸𝑛−1 → 𝐸𝑛/𝐸𝑛−1 → 𝐸𝑛/𝑌𝑛 → 0

in A. Note that 𝑌𝑛/𝐸𝑛−1 lies in L and that 𝐸𝑛/𝑌𝑛 is L-torsion-free and nonzero. If 𝑌𝑛/𝐸𝑛−1 is also
nonzero, then because A∩L is stable in A, this extension is not essential. This gives us some subobject
W of 𝐸𝑛 containing 𝐸𝑛−1 such that 𝑊/𝐸𝑛−1 is isomorphic to a nonzero subobject of 𝐸𝑛/𝑌𝑛; thus,
𝑊/𝐸𝑛−1 is also nonzero and L-torsion-free. If 𝑌𝑛 = 𝐸𝑛−1, then we can take 𝑊 = 𝐸𝑛 to obtain an object
with the same properties.

Write 𝐸−1 := 0 and 𝑋 := 𝑊/𝐸𝑛−2 ⊆ 𝐸𝑛/𝐸𝑛−2, and consider the short exact sequence

0→ 𝐸𝑛−1/𝐸𝑛−2 → 𝑋 → 𝑊/𝐸𝑛−1 → 0.

Since the outer terms in this short exact sequence lie in A, we see that 𝑟1(𝑋) = 𝑋 . Also, 𝑟 (𝑋) ⊆
𝑟 (𝐸𝑛/𝐸𝑛−2) = 𝐸𝑛−1/𝐸𝑛−2 = 𝑟 (𝐸𝑛−1/𝐸𝑛−2) ⊆ 𝑟 (𝑋), where the left equality uses Lemma 3.1.2.b, shows
that

𝑟 (𝑋) = 𝐸𝑛−1/𝐸𝑛−2 � 𝑋.

Since𝑊/𝐸𝑛−1 isL-torsion-free and 𝐸𝑛−1/𝐸𝑛−2 = 𝑌𝑛−1/𝐸𝑛−2 is a subquotient of Y, we see that 𝑟 (𝑋) is the
largest subobject of X contained inL. Applying now Proposition 3.5.7 with X leads to a contradiction. �

3.6. A ring-theoretic case

In this section, we discuss stability for the category C = Mod(𝐻) of left H-modules over a ring H which
is assumed to be left noetherian and finitely generated as a module over its centre 𝑍 (𝐻). This material
will be needed in §3.7.

The ring 𝑍 (𝐻) is necessarily noetherian by [MCR] Corollary 10.1.11(ii). The ring H is also right
noetherian, and the abelian categories Mod(𝐻) and Mod(𝑍 (𝐻)) are locally noetherian Grothendieck
categories. Of course, Spec(𝐻) and Spec(𝑍 (𝐻)) denote the prime ideal spectra of the respective rings
equipped with its Zariski topology.

Let 𝜚 : Mod(𝐻) → Mod(𝑍 (𝐻)) denote the functor of passing to the underlying 𝑍 (𝐻)-module. By
[Gab] Proposition 10 on p. 428, any localising subcategory of Mod(𝑍 (𝐻)) is stable. We further have
the following facts.
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Lemma 3.6.1.

a) For any localising subcategory L of Mod(𝑍 (𝐻)), the localising subcategory 𝜚−1(L) of Mod(𝐻) is
stable.

b) For any ordinal 𝛼, we have 𝜚−1 (Mod(𝑍 (𝐻))𝛼) = Mod(𝐻)𝛼, which therefore is stable.
c) For any ordinal 𝛼 < 𝜅(Mod(𝐻)), we have

Sp𝛼 (Mod(𝐻)) = {[𝐸] ∈ Sp(Mod(𝐻)) : 𝜅(𝐸) = 𝛼 + 1}.

Proof. a) [Gab] Proposition 12 on p. 431. b) The equality is [MCR] Corollary 10.1.10, and the stability
then follows from a). c) Because of b) this follows from Remark 2.2.1. �

Next, we have:

(A) The continuous map 𝜑 : Spec(𝐻) → Spec(𝑍 (𝐻)) sending 𝔭 to 𝔭 ∩ 𝑍 (𝐻) is surjective with finite
fibers (cf. [Gab] Proposition 11 on p. 429).

(B) We recall from [Ste] Chapter VII §1 that a prime ideal 𝔭 of H is associated to the H-module M if
there exists a nonzero submodule L of M such that 𝔭 = Ann𝐻 (𝐿 ′) for all nonzero H-submodules
𝐿 ′ of L. The map

Sp(Mod(𝐻)) ∼−−→ Spec(𝐻) (6)
[𝐽] ↦−→ the unique prime ideal associated to 𝐽

is a homeomorphism w.r.t. the Gabriel–Zariski and the Zariski topology on the left-hand and right-
hand sides, respectively ([Ste] Theorem VII.2.1 recalling the fact that H is fully left and right
bounded by [Ste] VII §2 Example 4), [Gab] V §4). Let 𝔭 ∈ Spec(𝐻). Fix an injective hull 𝐸 (𝐻/𝔭)
of 𝐻/𝔭 in Mod(𝐻). From [Ste] Proposition VII.1.9, we know that 𝐸 (𝐻/𝔭) � ⊕𝑖∈𝐼𝐸𝔭 for a single
indecomposable injective H-module 𝐸𝔭. Using [Ste] Lemma VII.1.7, we see that the inverse of the
bijection (6) is given by 𝔭 ↦−→ [𝐸𝔭].

First, we describe the stable Zariski topology, where we will always make silently the identification
(6). Hence, on Spec(𝑍 (𝐻)) the stable Zariski topology is the Zariski topology. From [Gab] V §4,
we know that the Ziegler-open subsets of Spec(𝐻) are the possibly infinite unions of Zariski-closed
subsets. Hence, the quasi-compact Ziegler-open subsets are the Zariski-closed subsets. Therefore, the
open subsets for the stable Zariski topology are the stable Zariski-open subsets.

Lemma 3.6.2. 𝐴(𝜚−1(L)) = 𝜑−1 (𝐴(L)) for any localising subcategory L of Mod(𝑍 (𝐻)).

Proof. (Recall the notation 𝐴(L) from §3.4.) Using Corollary 3.5.2, we compute

𝐴(𝜚−1(L)) = {𝔭 ∉ Spec(𝐻) : 𝐸𝔭 ∈ ob(𝜚−1 (L))}
= {𝔭 ∈ Spec(𝐻) : 𝐻/𝔭 ∉ ob(𝜚−1 (L))}
= {𝔭 ∈ Spec(𝐻) : 𝜚(𝐻/𝔭) ∉ ob(L)}
⊇ {𝔭 ∈ Spec(𝐻) : 𝑍 (𝐻)/𝜑(𝔭) ∉ ob(L)}
= 𝜑−1(𝐴(L)).

For the reverse inclusion, we suppose that 𝑍 (𝐻)/𝜑(𝔭) lies in L. Being a finitely generated 𝑍 (𝐻)/𝜑(𝔭)-
module 𝜚(𝐻/𝜑(𝔭)𝐻) also must lie in ob(L) and hence 𝐻/𝜑(𝔭)𝐻 ∈ ob(𝜚−1 (L)). It follows that 𝐻/𝔭,
as a quotient of 𝐻/𝜑(𝔭)𝐻, is contained in ob(𝜚−1 (L)). �

Lemma 3.6.3. For 𝔭,𝔮 ∈ Spec(𝐻), we have:

a) Let 𝑧 ∈ 𝑍 (𝐻); if 𝑧 ∈ 𝔭, then z acts locally nilpotently on 𝐸𝔭; if 𝑧 ∉ 𝔭, then z acts invertibly on 𝐸𝔭.
b) If Hom𝐻 (𝐸𝔭, 𝐸𝔮) ≠ 0, then 𝔭 ∩ 𝑍 (𝐻) ⊆ 𝔮 ∩ 𝑍 (𝐻).
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Proof. a) Let L be a uniform left ideal in 𝐻/𝔭 so that 𝐸𝔭 is the injective hull 𝐸 (𝐿) of L.
Suppose first that 𝑧 ∉ 𝔭. Multiplication by z is an injective H-linear map ℓ𝑧 : 𝐻/𝔭 → 𝐻/𝔭: If

𝑥 +𝔭 ∈ 𝐻/𝔭 is such that 𝑧(𝑥 +𝔭) = 𝔭, then (𝐻𝑧𝐻) (𝐻𝑥𝐻) ⊆ 𝔭 since z is central in H, so 𝑥 ∈ 𝔭 since 𝔭 is
prime and 𝑧 ∉ 𝔭. Since L is an H-submodule of 𝐻/𝔭, ℓ𝑧 : 𝐿 → 𝐿 is also injective. Hence, it extends to
an injective H-linear map ℓ𝑧 : 𝐸 (𝐿) → 𝐸 (𝐿) by the injectivity of 𝐸 (𝐿). The image of ℓ𝑧 must admit a
complement in 𝐸 (𝐿) since it is itself injective. Since 𝐸 (𝐿) � 𝐸𝔭 is indecomposable, ℓ𝑧 : 𝐸 (𝐿) → 𝐸 (𝐿)
is an isomorphism, as claimed.

Now, suppose that 𝑧 ∈ 𝔭 and let 𝑥 ∈ 𝐸𝔭 be nonzero. Since L is essential in 𝐸𝔭, we see that 𝐻𝑥 ∩ 𝐿
is essential in 𝐻𝑥. Since H is noetherian and z is central, the ideal 𝑧𝐻 of H satisfies the left Artin–Rees
property by [MCR] Proposition 4.2.6. Since 𝑧 ∈ 𝔭 kills L, it also kills 𝐻𝑥 ∩ 𝐿. So 𝑧𝑛 kills 𝐻𝑥 for some
𝑛 ≥ 1 by the implication (i)⇒ (iii) of [MCR] Theorem 4.2.2.

b) Let 𝜙 : 𝐸𝔭 → 𝐸𝔮 be a nonzero map. Suppose that there is a 𝑧 ∈ (𝔭∩ 𝑍 (𝐻)) \𝔮. Then, by a), z acts
invertibly on 𝐸𝔮 but locally nilpotently on 𝐸𝔭. Consider any 𝑥 ∈ 𝐸𝔭 such that 𝜙(𝑥) ≠ 0. We find a 𝑡 ≥ 1
such that 𝑧𝑡𝑥 = 0. Hence, 𝑧𝑡𝜙(𝑥) = 𝜙(𝑧𝑡𝑥) = 𝜙(0) = 0, which is a contradiction. �

For any subset 𝐴 ⊆ Spec(𝐻), the full subcategory L𝐴 of all modules U in Mod(𝐻) such that
Hom𝐻 (𝑈, 𝐸𝔭) = 0 for any 𝔭 ∈ 𝐴 is a localising subcategory of Mod(𝐻). Obviously, we have 𝐴 ⊆
𝐴(L𝐴).

We now describe explicitly all localising subcategories of Mod(𝐻) which are of the form 𝜌−1(L) as
in Lemma 3.6.1.a.

Recall that a subset S of a topological space T is called generalization-closed if any point 𝑦 ∈ 𝑇
whose closure {𝑦} contains a point in S also lies in S. Equivalently, S is generalization-closed if and
only if it is a (possibly infinite) intersection of open subsets of T.

Before Lemma 3.6.2, we had noted that the Ziegler-open subsets of Spec(𝐻) are the unions of Zariski-
closed subsets. Hence, the Ziegler-closed subsets are the generalization-closed subsets. Therefore, the
inverse of the bijection (3) is the map

set of all generalization-closed �−−→ collection of all localising
subsets of Spec(𝑍 (𝐻)) subcategories of Mod(𝑍 (𝐻))

𝑊 ↦−→ L𝑍𝑊 := all 𝑀 with Hom𝑍 (𝐻 ) (𝑀, 𝐸) = 0
for any [𝐸] ∈ 𝑊.

We conclude from Lemma 3.6.2 that

𝜚−1(L𝑍𝑊 ) = L𝜑−1 (𝑊 ) . (7)

For an ideal I of 𝑍 (𝐻), recall that 𝑉 (𝐼) denotes the subset of Spec(𝑍 (𝐻)) consisting of all prime
ideals containing I.

Proposition 3.6.4. Let W be a generalization-closed subset of Spec(𝑍 (𝐻)). The following are equivalent
for an H-module M:

a) M lies in L𝜑−1 (𝑊 ) ;
b) 𝑉 (Ann𝑍 (𝐻 ) (𝑣)) ∩𝑊 = ∅ for all nonzero 𝑣 ∈ 𝑀;
c) 𝑉 (Ann𝑍 (𝐻 ) (𝑁)) ∩𝑊 = ∅ for all noetherian submodules 𝑁 ⊆ 𝑀 .

Proof. Since L𝜑−1 (𝑊 ) is localising we may assume that M is finitely generated. If 𝑣1, . . . , 𝑣𝑟 are
generators of the H-module M, then

𝑉 (Ann𝑍 (𝐻 ) (𝑀)) = 𝑉
(
𝑟⋂
𝑖=1

Ann𝑍 (𝐻 ) (𝑣𝑖)
)
=

𝑟⋃
𝑖=1

𝑉 (Ann𝑍 (𝐻 ) (𝑣𝑖)).

This shows the equivalence of b) and c).

https://doi.org/10.1017/fms.2024.37 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.37


Forum of Mathematics, Sigma 19

For the equivalence of a) and b), we first note that, because H is noetherian, M contains an essential
submodule N of the form 𝑁 = 𝑁1 ⊕ · · · ⊕ 𝑁𝑟 , where each 𝑁𝑖 is a uniform H-module ([GW] Corollary
5.18 and Proposition 5.15). Hence, 𝐸 (𝑀) = 𝐸 (𝑁) �

⊕𝑛
𝑖=1 𝐸 (𝑁𝑖). By [GW] Lemma 5.26, for each

𝑖 = 1, · · · , 𝑟 there is a unique prime ideal 𝔭𝑖 of H which is equal to the annihilator of some nonzero
H-submodule 𝑁 ′𝑖 of 𝑁𝑖 , and which contains the annihilators of all nonzero H-submodules of 𝑁𝑖 . This
𝔭𝑖 is the assassinator of 𝑁𝑖 in the sense of [GW] Definition on p. 102.

Since H is assumed to be a finitely generated module over its centre, it is an FBN-ring by [GW]
Proposition 9.1(a). Then we can apply [GW] Proposition 9.14 to see that the uniform injective H-module
𝐸 (𝑁𝑖) is isomorphic to the H-injective hull 𝐸 (𝐿𝑖) of any uniform left ideal 𝐿𝑖 of 𝐻/𝔭𝑖 . In other words,
([GW] Lemma 5.14), 𝐸 (𝑁𝑖) � 𝐸𝔭𝑖 and

𝐸 (𝑀) � 𝐸 (𝑁) �
𝑟⊕
𝑖=1

𝐸 (𝑁𝑖) �
𝑟⊕
𝑖=1

𝐸𝔭𝑖 .

We identify M with its image inside 𝐸 (𝑀). Note that M is not contained in the direct sum
⊕

𝑖≠ 𝑗 𝐸𝔭𝑖
for any j because otherwise we would have 𝑀 ∩ 𝐸𝔭 𝑗 = 0, which contradicts the fact that M is essential
in 𝐸 (𝑀). So, Hom𝐻 (𝑀, 𝐸𝔭 𝑗 ) is nonzero for any j.

a) ⇒ b). Suppose that M lies in L𝜑−1 (𝑊 ) . From Hom𝐻 (𝑀, 𝐸𝔭 𝑗 ) ≠ 0 for any j, we deduce that
𝔭 𝑗 ∉ 𝜑−1 (𝑊) for all j. Now, consider any nonzero 𝑣 ∈ 𝑀 and any 𝔭 ∈ 𝜑−1(𝑉 (Ann𝑍 (𝐻 ) (𝑣))). Because
𝔭𝑖 ∩ 𝑍 (𝐻) acts locally nilpotently on 𝐸𝔭𝑖 by Lemma 3.6.3.a, we see that

((𝔭1 ∩ 𝑍 (𝐻)) (𝔭2 ∩ 𝑍 (𝐻)) · · · (𝔭𝑟 ∩ 𝑍 (𝐻))𝑘 · 𝑣 = 0

for some 𝑘 > 0. This implies that 𝔭 𝑗 ∩ 𝑍 (𝐻) ⊆ 𝔭 ∩ 𝑍 (𝐻) for some j. Since W is generalization-closed
and 𝔭 𝑗 ∩ 𝑍 (𝐻) ∉ 𝑊 , we see that 𝔭 ∩ 𝑍 (𝐻) ∉ 𝑊 . Hence, 𝑉 (Ann𝑍 (𝐻 ) (𝑣)) ∩𝑊 = ∅.

b) ⇒ a). Suppose that Hom𝐻 (𝑀, 𝐸𝔮) ≠ 0 for some 𝔮 ∈ 𝜑−1(𝑊). Then Hom𝐻 (𝐸𝔭𝑖 , 𝐸𝔮) ≠ 0 for
some 1 ≤ 𝑖 ≤ 𝑟 and so 𝔭𝑖 ∩ 𝑍 (𝐻) ⊆ 𝔮 ∩ 𝑍 (𝐻) by Lemma 3.6.3.b. Hence, 𝔭𝑖 ∩ 𝑍 (𝐻) ∈ 𝑊 since W is
generalization-closed.

Choose a nonzero element 𝑣 ∈ 𝑁 ′𝑖 ; since 𝔭𝑖 kills 𝑁 ′𝑖 ⊇ 𝐻𝑣, we have 𝔭𝑖 ⊆ Ann𝐻 (𝐻𝑣); on the other
hand, 𝔭𝑖 contains Ann𝐻 (𝐻𝑣) as we saw above and hence 𝔭𝑖 = Ann𝐻 (𝐻𝑣). Since 𝑍 (𝐻) is central in H,
we have Ann𝑍 (𝐻 ) (𝑣) = Ann𝑍 (𝐻 ) (𝐻𝑣). This ideal of 𝑍 (𝐻) is equal to Ann𝐻 (𝐻𝑣) ∩ 𝑍 (𝐻) = 𝔭𝑖 ∩ 𝑍 (𝐻).
Thus, Ann𝑍 (𝐻 ) (𝑣) = 𝔭𝑖 ∩ 𝑍 (𝐻) lies in W and therefore 𝑉 (Ann𝑍 (𝐻 ) (𝑣)) ∩𝑊 ≠ ∅. �

Obviously, we have a corresponding result for modules over 𝑍 (𝐻).

Remark 3.6.5. Let W be a generalization-closed subset of Spec(𝑍 (𝐻)). The following are equivalent
for a 𝑍 (𝐻)-module M:

a) M lies in L𝑍𝑊 ;
b) 𝑉 (Ann𝑍 (𝐻 ) (𝑣)) ∩𝑊 = ∅ for all nonzero 𝑣 ∈ 𝑀;
c) 𝑉 (Ann𝑍 (𝐻 ) (𝑁)) ∩𝑊 = ∅ for all noetherian submodules 𝑁 ⊆ 𝑀 .

3.7. A stability criterion for thickenings

Throughout this section, let C be a locally noetherian Grothendieck category which is a thickening of its
full abelian subcategory A. Recall from §3 that we then have the increasing filtration A = A0 ↩→ A1 ↩→
. . . ↩→ A 𝑗 ↩→ . . . of C by full abelian subcategories, which all are locally noetherian Grothendieck
categories. By Equation (2), the corresponding injective spectra all are in bijection

Sp(C) �−−→ Sp(A 𝑗 )
�−−→ Sp(A)

[𝐸] ↦−→ 𝑟 𝑗 ([𝐸]) ↦−→ 𝑟 ([𝐸]).
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By Corollary 3.4.6 and Corollary 3.5.4, the inverses of these bijections are continuous for the stable as
well as the stable Zariski topologies. Actually, it is straightforward to deduce that, for 𝑖 ≤ 𝑗 , the map

Sp(A 𝑗 )
�−−→ Sp(A𝑖)

𝑥 = [𝐸𝑥] ↦−→ 𝑟 𝑗 ,𝑖 (𝑥) := 𝑟𝑖 (𝑥) = [𝑟𝑖 (𝐸𝑥)]

is a bijection with inverse [𝑈] ↦→ [𝐸A 𝑗 (𝑈)], and this inverse is continuous for the stable as well as the
stable Zariski topologies.

In this section, we will present a technique to actually find stable subsets in Sp(C). For this, we assume
again from now on that A has a noetherian projective generator P. Recall that 𝐻 = EndA (𝑃)op =
EndC (𝑃)op, and let 𝑍 = 𝑍 (𝐻) denote its centre. By the equivalence of categories (4), this centre Z acts
naturally on any object in A, that is, 𝑍 = 𝑍 (A) is the centre of the category A.

But we need further assumptions. The first one is:

(A1) H is finitely generated as a module over its centre Z.

The central tool for our investigation will be the (graded) (𝐻, 𝐻)-bimodule

Ext∗C (𝑃, 𝑃) :=
∞⊕
𝑖=0

Ext𝑖C (𝑃, 𝑃).

This, in particular, is a module for 𝑍 ⊗ 𝑍 := 𝑍 ⊗Z 𝑍 . We let J := Ann𝑍 ⊗𝑍 (Ext∗C (𝑃, 𝑃)) be its annihilator
ideal and R := 𝑉 (J ) ⊆ Spec(𝑍 ⊗ 𝑍) be the corresponding Zariski closed subset. Further, let 𝜋𝑖 : R→
Ξ := Spec(𝑍), for 𝑖 = 1, 2, denote the restrictions of the two projection maps Spec(𝑍 ⊗ 𝑍) ⇒ Ξ. We
then have a coequaliser diagram

R
𝜋1 ��

𝜋2
�� Ξ

q �� ℨ

in the category of locally ringed spaces (cf. [DG] Proposition I.1.1.6). We briefly recall that q is a
topological quotient map which identifies the points 𝜋1 (𝑥) and 𝜋2 (𝑥) for all 𝑥 ∈ R and that the sheaf
Oℨ is given, for any open subset𝑈 ⊆ Ξ, by the equalizer diagram

Oℨ (𝑈)
q#=⊆ �� OΞ (q−1 (𝑈))

𝜋#
1 ��

𝜋#
2

�� OR ((q𝜋𝑖)−1(𝑈)).

In section 3.6, we considered, for any generalization-closed subset 𝑊 ⊆ Ξ, the localising subcate-
gories L𝑍𝑊 of Mod(𝑍) and L𝐻𝑊 := L𝜑−1 (𝑊 ) of Mod(𝐻). These satisfy 𝜚−1 (L𝑍𝑊 ) = L𝐻𝑊 by Equation
(7). Under the category equivalence (4), the subcategory L𝐻𝑊 corresponds to the localising subcategory

LA
𝑊 := all 𝐴 in A such that HomA(𝑃, 𝐴) lies in L𝐻𝑊

of A. Finally, by Proposition 3.4.3, we have the localising subcategory LC
𝑊 := 〈LA

𝑊 〉 of C, which is the
unique localising subcategory of C such that A ∩ LC

𝑊 = LA
𝑊 .

Theorem 3.7.1. In addition to (A1), we assume:

(A2) There is an integer d such that Ext 𝑗C (𝑃,−)|A = 0 for any 𝑗 > 𝑑.
(A3) 𝑍 ⊗ 𝑍/J 𝑑+1 is noetherian.

Then, for any generalization-closed subset 𝑊 ⊆ Ξ with the property that 𝜋2 (𝜋−1
1 (𝑊)) ⊆ 𝑊 , the

localising subcategory LC
𝑊 is stable.
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We begin the proof by recalling the following useful fact.

Lemma 3.7.2. Let M be a noetherian object in C. Then Ext 𝑗C (𝑀,−) commutes with filtered colimits for
all 𝑗 ≥ 0.

Proof. In the Grothendieck category C filtered colimits are exact. Moreover, because C is locally
noetherian and M is a noetherian object in C, [Gab] Corollary 1 on p. 358 tells us that:

– the full subcategory of injective objects in C is closed under filtered colimits;
– the functor 𝐹 := HomC (𝑀,−) from C to the category of abelian groups commutes with filtered

colimits.

In this situation, [KS] Proposition 15.3.3 implies that the derived functors 𝑅 𝑗𝐹 = Ext 𝑗C (𝑀,−) of F
commute with filtered colimits. �

Next, we first need an auxiliary result. Since 𝑍 = 𝑍 (A) the ring 𝑍 ⊗ 𝑍 acts, for any two objects
𝐴1 and 𝐴2 in A, naturally on the groups Ext 𝑗C (𝐴1, 𝐴2) with the first and second factor in 𝑍 ⊗ 𝑍 acting
through endomorphisms in the category C on 𝐴1 and 𝐴2, respectively.

Lemma 3.7.3. Suppose that (A2) holds true, and let A be an arbitrary object in A; then, for any 𝑗 ≥ 0,
the 𝑍 ⊗ 𝑍-module Ext 𝑗C (𝑃, 𝐴) is annihilated by J 𝑑+1− 𝑗 .

Proof. By Lemma 3.7.2, the functors Ext 𝑗C (𝑃,−), for any 𝑗 ≥ 0, commute with arbitrary direct sums.
It follows that J annihilates Ext∗C (𝑃, 𝐹) for any F which is a possibly infinite direct sums of copies of
P. Since P is a generator2 of A, using [Ste] p. 93 Proposition 6.2 repeatedly we find an exact sequence
in A of the form

. . . −→ 𝐹𝑛 −→ . . . −→ 𝐹0 −→ 𝐴 −→ 0,

where each 𝐹𝑛 is a direct sum of copies of P. We break it up into short exact sequences

0→ 𝑌0 → 𝐹0 → 𝐴→ 0
0→ 𝑌1 → 𝐹1 → 𝑌0 → 0
· · ·
0→ 𝑌𝑛 → 𝐹𝑛 → 𝑌𝑛−1 → 0
· · ·

Applying Ext∗C (𝑃,−) we obtain exact sequences

Ext𝑖C (𝑃, 𝐹0) → Ext𝑖C (𝑃, 𝐴)
𝛿−→ Ext𝑖+1C (𝑃,𝑌0)

Ext𝑖+1C (𝑃, 𝐹1) → Ext𝑖+1C (𝑃,𝑌0)
𝛿−→ Ext𝑖+2C (𝑃,𝑌1)

· · ·

Ext𝑖+𝑛C (𝑃, 𝐹𝑛) → Ext𝑖+𝑛C (𝑃,𝑌𝑛−1)
𝛿−→ Ext𝑖+𝑛+1C (𝑃,𝑌𝑛) ,

· · ·

where 𝛿 denotes the connecting homomorphisms. These are sequences of 𝑍 ⊗ 𝑍-bimodules. The first
term in each sequence is annihilated by J . Now, choose 𝑛 := 𝑑 − 𝑖. Then Ext𝑖+𝑛+1C (𝑃,𝑌𝑛) = 0. The
assertion now follows by downward induction along the above sequences. �

Proof of Theorem 3.7.1. Since L𝐻𝑊 = 𝜚−1 (L𝑍𝑊 ), it follows from Lemma 3.6.1 that L𝐻𝑊 is stable in
Mod(𝐻). Hence, LA

𝑊 = LC
𝑊 ∩ A is stable in A. Therefore, by Theorem 3.5.8, it is enough to show

2The projectivity of P is not needed for this argument.
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that the functor Ext1C (𝑃,−) maps LA
𝑊 to L𝐻𝑊 . By Lemma 3.7.2, the functor Ext1C (𝑃,−) commutes with

filtered colimits. Hence, it suffices to show that for any noetherian object A in LC
𝑊 ∩A, the H-module

𝑀 := Ext1C (𝑃, 𝐴) lies in L𝐻𝑊 . Since the functor Ext1C (𝑃,−) is also half-exact, we may assume further,
using a prime series for HomA(𝑃, 𝐴) as in [GW] Proposition 3.13, that the annihilator of any nonzero
H-submodule of HomA(𝑃, 𝐴) is a prime ideal 𝔭 of H. Then necessarily 𝔭 = Ann𝐻 (HomA (𝑃, 𝐴)), and
we write 𝔭𝑍 := 𝔭 ∩ 𝑍 ∈ Ξ.

By Lemma 3.7.3, the 𝑍 ⊗ 𝑍-module 𝑀 = Ext1C (𝑃, 𝐴) is killed by J 𝑑+1. Letting R𝑑 := Spec((𝑍 ⊗
𝑍)/J 𝑑+1), we can then regard M as an O(R𝑑) = (𝑍 ⊗ 𝑍)/J 𝑑+1-module in a natural way. Next, consider
the commutative diagram

R
𝜋1

����
���

���
���

��

𝜋2
����

���
���

���
��

𝑖 �� R𝑑 ,

𝑓2
�����

���
���

���
�𝑓1

�����
���

���
���

�

Ξ

(8)

where i is the closed embedding, and the 𝑓 𝑗 are, similarly as before, the restrictions of the two projection
maps.

Let 𝑆 := Ξ \𝑊 ; then our assumption 𝜋2 (𝜋−1
1 (𝑊)) ⊆ 𝑊 is equivalent to 𝜋−1

1 (𝑊) ⊆ 𝜋
−1
2 (𝑊), which is

the same as 𝜋−1
2 (𝑆) ⊆ 𝜋

−1
1 (𝑆). Since 𝜋 𝑗 = 𝑓 𝑗 ◦ 𝑖, this is equivalent to 𝑖−1 𝑓 −1

2 (𝑆) ⊆ 𝑖
−1 𝑓 −1

1 (𝑆). However,
i is a bijection because J is nilpotent modulo J 𝑑+1, so this is in turn equivalent to 𝑓 −1

2 (𝑆) ⊆ 𝑓 −1
1 (𝑆).

Now, 𝔭 is the annihilator of any nonzero H-submodule of HomA(𝑃, 𝐴), so 𝔭𝑍 = 𝔭 ∩ 𝑍 = Ann𝑍 (𝑣)
for all nonzero 𝑣 ∈ HomA (𝑃, 𝐴). Since HomA(𝑃, 𝐴) lies in L𝐻𝑊 , this means that 𝑉 (𝔭𝑍 ) ∩𝑊 = ∅ by
Proposition 3.6.4, and hence 𝑉 (𝔭𝑍 ) ⊆ 𝑆 = Ξ \𝑊 .

By assumption, O(R𝑑) = (𝑍 ⊗ 𝑍)/J 𝑑+1 is noetherian. Let 𝑖2 : 𝑍 → (𝑍 ⊗ 𝑍)/J 𝑑+1, sending
z to 1 ⊗ 𝑧 + J 𝑑+1, be the ring homomorphism which induces 𝑓2. Let 𝑄1, · · · , 𝑄𝑘 ⊆ O(R𝑑) be the
minimal prime ideals lying above 𝑖2(𝔭𝑍 )O(R𝑑); then 𝑄𝑎1

1 · · ·𝑄
𝑎𝑘
𝑘 ⊆ 𝑖2(𝔭𝑍 )O(R𝑑) for some positive

integers 𝑎1, · · · , 𝑎𝑘 . We have 𝑓2(𝑄 𝑗 ) = (𝑖2)−1(𝑄 𝑗 ) ∈ 𝑉 (𝔭𝑍 ) because 𝑄 𝑗 contains 𝑖2(𝔭𝑍 ). Therefore,
𝑄 𝑗 ∈ 𝑓 −1

2 (𝑉 (𝔭𝑍 )) ⊆ 𝑓 −1
2 (𝑆) ⊆ 𝑓 −1

1 (𝑆). Thus, we see that 𝔮 𝑗 := 𝑓1 (𝑄 𝑗 ) lies in S for all 𝑗 = 1, · · · , 𝑘 .
Hence, 𝑉 (𝔮 𝑗 ) ⊆ 𝑆 for all j because S is specialization-closed.

With HomA (𝑃, 𝐴) also A is killed by 𝔭𝑍 . Hence, 𝑀 = Ext1C (𝑃, 𝐴) is killed by 𝑍 ⊗ 𝔭𝑍 as well as
J 𝑑+1. We see that M is killed by 𝑖2(𝔭𝑍 )O(R𝑑) ⊇ 𝑄𝑎1

1 · · ·𝑄
𝑎𝑘
𝑘 . Hence, 𝔮𝑎1

1 · · ·𝔮
𝑎𝑘
𝑘 · 𝑣 = 0 for any 𝑣 ∈ 𝑀 ,

so 𝑉 (Ann𝑍 (𝑣)) ⊆ 𝑉 (𝔮1) ∪ · · · ∪ 𝑉 (𝔮𝑘 ) ⊆ 𝑆. Therefore, the H-module M (where H acts on M through
its action on P) lies in L𝐻𝑊 by Proposition 3.6.4 as required. �

Now, we form the following diagram, which defines the map 𝜏:

Sp(A) 𝑟−1

�
��

�
��

Sp(C)

𝜏

��

Sp(Mod(𝐻))

�
��

Spec(𝐻) 𝜑
�� Spec(𝑍) = Ξ q

�� ℨ = Ξ/ℜ

.

Proposition 3.7.4. Assume (A1), (A2), (A3). If 𝑈 ⊆ ℨ is an intersection of open subsets, then 𝜏−1(𝑈)
is stable.
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Proof. Put 𝑊 = q−1 (𝑈). Then

𝜋2 (𝜋−1
1 (𝑊)) = 𝜋2 (𝜋−1

1 q−1(𝑈)) = 𝜋2 (𝜋−1
2 q−1(𝑈)) ⊆ q−1(𝑈) = 𝑊.

Now, apply Theorem 3.7.1. �

Remark 3.7.5. Suppose that our category C is k-linear. Then the 𝑍 ⊗Z 𝑍-action on the Ext-groups
Ext 𝑗C (𝑀, 𝑁) for 𝑀, 𝑁 in A, factors through 𝑍 ⊗𝑘 𝑍 . Therefore, the proof of Theorem 3.7.1 goes through
if we replace (A3) by the weaker assumption that (𝑍 ⊗𝑘 𝑍)/J

𝑑+1
is noetherian, where J is the image

of J under the surjection 𝑍 ⊗Z 𝑍 � 𝑍 ⊗𝑘 𝑍 .

We also apply Theorem 3.7.1 to give a sufficient criterion for the stability of the Krull-dimension
filtration of the locally noetherian category C. For every ordinal 𝛼, the set

𝑊𝛼 := {𝔭 ∈ Ξ : 𝜅(𝑍/𝔭) > 𝛼}

is a generalization-stable subset of Ξ. We identify the corresponding localising subcategory LC
𝑊𝛼

of C
in Lemma 3.7.7 below, but first we recall a standard fact about Krull dimension.

Lemma 3.7.6. Let M be a finitely generated module over a commutative noetherian ring A. Then

𝜅(𝑀) = sup
𝑣 ∈𝑀

𝜅(𝐴𝑣) = sup
𝑣 ∈𝑀

sup
𝔭∈𝑉 (ann(𝑣))

𝜅(𝐴/𝔭).

Proof. An induction on the number of generators of M together with [MCR] Lemma 6.2.4 shows the
first equality, namely 𝜅(𝑀) = sup𝑣 ∈𝑀 𝜅(𝐴𝑣).

Let I be an ideal of A. Since A is noetherian, [MCR] Lemma 6.2.4 implies that 𝜅(𝐴/𝐼) = 𝜅(𝐴/𝐼𝑚)
for all 𝑚 ≥ 0. Since (

√
𝐼)𝑚 ⊆ 𝐼 for sufficiently large m, we have 𝜅(𝐴/𝐼) ≥ 𝜅(𝐴/

√
𝐼) = 𝜅(𝐴/(

√
𝐼)𝑚) ≥

𝜅(𝐴/𝐼), so in fact we have the equality 𝜅(𝐴/𝐼) = 𝜅(𝐴/
√
𝐼). Since

√
𝐼 is equal to the intersection

of the finitely many minimal primes 𝔭1, · · · ,𝔭𝑛 containing it, there is a natural A-linear embedding
𝐴/
√
𝐼 ↩→ ⊕𝑛𝑖=1𝐴/𝔭𝑖 . So

𝜅(𝐴/𝐼) = 𝜅(𝐴/
√
𝐼) ≤ sup

1≤𝑖≤𝑛
𝜅(𝐴/𝔭𝑖) ≤ sup

𝔭∈𝑉 (𝐼 )
𝜅(𝐴/𝔭) ≤ 𝜅(𝐴/𝐼).

Therefore, for any 𝑣 ∈ 𝑀 , 𝜅(𝐴𝑣) = 𝜅(𝐴/Ann𝐴(𝑣)) = sup
𝔭∈𝑉 (ann(𝑣))

𝜅(𝐴/𝔭). �

Recall (§2.2) that C𝛼 is the full subcategory of C consisting of objects V such that 𝜅(𝑉) ≤ 𝛼.

Lemma 3.7.7. For any ordinal 𝛼, we have LC
𝑊𝛼

= C𝛼.

Proof. By Gabriel’s definition of Krull dimension found at [Gab] p. 382, we see that 𝜅(𝑉) = sup𝑖 𝜅(𝑉𝑖)
if we write 𝑉 = lim−−→𝑉𝑖 as a filtered colimit of its noetherian subobjects 𝑉𝑖 . Therefore, it is enough to
show that for noetherian 𝑉 ∈ C, we have 𝑉 ∈ LC

𝑊𝛼
if and only if 𝜅(𝑉) ≤ 𝛼. Since C is a thickening of

A, we may further assume that 𝑉 ∈ A. Hence, we are reduced to showing that for finitely generated
H-modules M, we have

𝑀 ∈ L𝐻𝑊𝛼
⇔ 𝜅(𝑀) ≤ 𝛼.

However, since H is a finitely generated Z-module, 𝜅(𝑀) = 𝜅(𝜌(𝑀)) by [MCR] Corollary 10.1.10,
whereas 𝑀 ∈ L𝐻𝑊𝛼

if and only if 𝜌(𝑀) ∈ L𝑍𝑊𝛼
by equation (7). Next, 𝜌(𝑀) ∈ L𝑍𝑊𝛼

if and only if for all
𝑣 ∈ 𝑀 and all 𝔭 ∈ Spec(𝑍) containing Ann𝑍 (𝑣), we have 𝜅(𝑍/𝔭) ≤ 𝛼. As 𝜌(𝑀) is a finitely generated
Z-module, this is equivalent to 𝜅(𝜌(𝑀)) ≤ 𝛼 by Lemma 3.7.6. �

We can now establish the stability of the Krull-dimension filtration on C under certain fairly restrictive
hypotheses on Ξ and R.
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Proposition 3.7.8. Suppose that C is k-linear, that Z is a finitely generated k-algebra and that there is an
integer d such that Ext 𝑗C (𝑃, .) |A = 0 for any 𝑗 > 𝑑. Suppose further that pr2 : R → Ξ is quasi-finite.
Then LC

𝑊𝛼
is a stable localising subcategory of C for all 𝛼.

Proof. By assumption, the k-algebra 𝑍 ⊗𝑘 𝑍 is also finitely generated, so it is noetherian by Hilbert’s
basis theorem. By Theorem 3.7.1 and Remark 3.7.5, it is enough to show that

pr2 (pr−1
1 (𝑊𝛼)) ⊆ 𝑊𝛼 .

Let S𝛼 := Ξ\𝑊𝛼 be the complement of 𝑊𝛼 in Ξ; then it is enough to show that

pr1 (pr−1
2 (S𝛼)) ⊆ S𝛼 .

Let 𝑃 ∈ pr−1
2 (S𝛼), and set 𝔭𝑖 := pr𝑖 (𝑃) for 𝑖 = 1, 2. Then 𝔭2 ∈ S𝛼, so 𝜅(𝑍/𝔭2) ≤ 𝛼. The morphisms pr1

and pr2 induce the following diagram of residue fields:

𝑘 (𝔭1) ↩→ 𝑘 (𝑃) ←↪ 𝑘 (𝔭2).

Since pr2 : R→ Ξ is quasi-finite, 𝑘 (𝑃) is a finite-dimensional 𝑘 (𝔭2)-vector space. Hence,

tr. deg𝑘 (𝑘 (𝔭1)) ≤ tr. deg𝑘 (𝑘 (𝑃)) = tr. deg𝑘 (𝑘 (𝔭2)).

Since Z is a finitely generated k-algebra, we can apply a version of the Noether normalisation theorem
– see [Mat] Theorem 5.6 – to deduce that

𝜅(𝑍/𝔭𝑖) = tr. deg𝑘 (𝑍/𝔭𝑖) = tr. deg𝑘 (𝑘 (𝔭𝑖)) for 𝑖 = 1, 2.

Hence, 𝜅(𝑍/𝔭1) ≤ 𝜅(𝑍/𝔭2) ≤ 𝛼, which means that 𝔭1 = pr1 (𝑃) ∈ S𝛼. �

4. The quotient space for Mod𝑘 (𝑆𝐿2 (Q𝑝))

4.1. The pro-p Iwahori–Hecke algebra and its centre

4.1.1. The setup
Let 𝔉 be a finite extension of Q𝑝 with ring of integers 𝔒, maximal ideal 𝔐 and residue field 𝔣. We fix a
choice of generator 𝜋 of 𝔐. Necessarily, 𝔣 � F𝑞 for some power q of p. We assume that our ground
field k contains 𝔣.

4.1.2. Groups
Let 𝐺 = SL2(𝔉) and 𝐾 = SL2 (𝔒), and define the pro- p Iwahori subgroup

𝐼 :=
(
1 +𝔐 𝔒
𝔐 1 +𝔐

)
∩ 𝐺.

Let𝑇 =

(
𝔉× 0
0 𝔉×

)
∩𝐺 be the subgroup of diagonal matrices in G, and let𝑇0 := 𝑇∩𝐾 . The projection onto

the (1, 1)-entry gives group isomorphisms 𝑇 �−→ 𝔉× and 𝑇0 �−→ 𝔒×. Hence, 𝑇/𝑇0 is an infinite cyclic

group. The normaliser 𝑁𝐺 (𝑇) of T in G is generated by T and 𝑠0 :=
(

0 1
−1 0

)
, and 𝑁𝐺 (𝑇) is isomorphic

to the semidirect product 𝑇 � 〈𝑠0〉, where 𝑠0 acts on T by inversion. This action preserves the subgroup
𝑇0, so that 𝑇0 is normal in 𝑁𝐺 (𝑇). Then we can form the affine Weyl group 𝑊 := 𝑁𝐺 (𝑇)/𝑇0 which is

isomorphic to the infinite dihedral group, generated by the 𝑇0-cosets of 𝑠0 and 𝑠1 :=
(
0 −𝜋−1

𝜋 0

)
. The
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subgroup 𝑇1 := 𝑇 ∩ 𝐼 is also normal in 𝑁𝐺 (𝑇), and this gives the extended Weyl group𝑊 := 𝑁𝐺 (𝑇)/𝑇1.
Let Ω := 𝑇0/𝑇1; then Ω � 𝔣× and we have the short exact sequence

1→ Ω→ 𝑊 → 𝑊 → 1.

Note that Ω is isomorphic to F×𝑞 and is therefore a finite cyclic group of order 𝑞 − 1.

4.1.3. The pro-p Iwahori–Hecke algebra
Let Ω̂ := Hom(Ω, 𝑘×) be the group of k-linear characters of Ω. Since k contains the residue field 𝔣 of 𝔉
by assumption, Ω̂ is a cyclic group of order 𝑞 − 1, generated by the identity character

id : Ω→ 𝑘×,

(
𝑎 0
0 𝑎−1

)
𝑇1 ↦→ 𝑎−1 +𝔐 ∈ 𝔣× ↩→ 𝑘×.

In other words, we have Ω̂ = {id 𝑗 : 0 ≤ 𝑗 ≤ 𝑞 − 2} where id0 = 1 is the trivial character. The group
algebra 𝑘 [Ω] contains 𝑞 − 1 primitive idempotents

𝑒𝜆 := −
∑
𝜔∈Ω

𝜆(𝜔)−1𝜔, 𝜆 ∈ Ω̂ (9)

that form a basis for 𝑘 [Ω] as a k-vector space. These idempotents are pairwise orthogonal:

𝑒𝜆𝑒𝜇 = 𝛿𝜆𝜇𝑒𝜆 for all 𝜆, 𝜇 ∈ Ω̂. (10)

We have the compactly induced G-representation

𝑋 := ind𝐺𝐼 (𝑘) := 𝑘 [𝐺/𝐼] = 𝑘 [𝐺] ⊗
𝑘 [𝐼 ]

𝑘

from the trivial representation k of I. It is a smooth k-linear representation of G, so 𝑘 [𝐺/𝐼] is an object
in Mod𝑘 (𝐺). The pro- p Iwahori–Hecke algebra is the opposite ring of the endomorphism ring of this
representation:

𝐻 := EndMod𝑘 (𝐺) (𝑘 [𝐺/𝐼])op.

The following facts are known about H.

Lemma 4.1.1.

a) The double cosets {𝜏𝑤 := 𝐼𝑤𝐼 : 𝑤 ∈ 𝑊} form a k-basis for H.
b) The map 𝑘 [Ω] → 𝐻 given by Ω � 𝜔 ↦→ 𝜏𝜔 is an injection of k-algebras.
c) The elements 𝜏0 := 𝜏𝑠0 and 𝜏1 := 𝜏𝑠1 generate H as a k-algebra together with 𝑘 [Ω].
d) We have 𝜏𝑖𝑒𝜆 = 𝑒𝜆−1𝜏𝑖 for 𝑖 = 0, 1 and any 𝜆 ∈ Ω̂.
e) We have the quadratic relations 𝜏2

𝑖 = −𝜏𝑖𝑒1 for 𝑖 = 0, 1.

We will never use the notation 𝜏𝑤 when w is the identity element of 𝑊 because this is equal to the
identity element in H. Therefore, writing 𝜏1 = 𝜏𝑠1 should not lead to any confusion.

4.1.4. The centre of H
The centre 𝑍 = 𝑍 (𝐻) of this k-algebra can be described explicitly. The following statement is well
known, but see also [OS18] §3.2.2.
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Lemma 4.1.2. The element

𝜁 := (𝜏0 + 𝑒1) (𝜏1 + 𝑒1) + 𝜏1𝜏0 = (𝜏1 + 𝑒1) (𝜏0 + 𝑒1) + 𝜏0𝜏1

generates a polynomial ring 𝑘 [𝜁] inside 𝑍 (𝐻).

Later on, the localisations 𝑍𝜁 of Z and 𝐻𝜁 of H at 𝜁 will play an important technical role.

Definition 4.1.3. For each 𝜆 ∈ Ω̂, we define the following elements of H:

𝑋𝜆 =

{
𝑒𝜆𝜏0𝜏1 + 𝑒𝜆−1𝜏1𝜏0 : 𝜆 ≠ 1

𝑒1𝜁 : 𝜆 = 1.

Again, we omit the proof of the following well-known result.

Lemma 4.1.4. Let 𝜆 ∈ Ω̂.

a) 𝑋𝜆 is central in H.
b) If 𝜆 ≠ 𝜆−1, then (𝑒𝜆 + 𝑒𝜆−1 )𝜁 = 𝑋𝜆 + 𝑋𝜆−1 .
c) If 𝜆 = 𝜆−1, then 𝑒𝜆𝜁 = 𝑋𝜆.
d) We have

∑
𝛼∈Ω̂

𝑋𝛼 = 𝜁 .

We will now describe Z completely as a k-algebra with relations and generators. Suppose that 𝜆 ∈ Ω̂
satisfies 𝜆 ≠ 𝜆−1; then using Lemma 4.1.1, we see that the idempotent 𝑒𝜆 + 𝑒𝜆−1 is central in H. It is
known, furthermore, that in this case

𝑋𝜆 · 𝑋𝜆−1 = 0.

For simplicity, we assume from now on that 𝑝 ≠ 2. Then precisely two characters 𝜆 ∈ Ω̂ satisfy
𝜆 = 𝜆−1, namely the trivial character 1 = id0 and ‘the quadratic character’ id

𝑞−1
2 . All other elements of

Ω̂ are not equal to their inverse. This gives us the decomposition of Z as a direct product of nonunital
subrings:

𝑍 = 𝑒1𝑍 ⊕ 𝑒
id

𝑞−1
2
𝑍 ⊕

𝑞−3
2⊕
𝑗=1
(𝑒id 𝑗 + 𝑒id− 𝑗 )𝑍. (11)

From §3.2 of [OS18], we deduce the following

Proposition 4.1.5. Let 𝜆 ∈ Ω̂, and let 𝑥, 𝑦 be indeterminates.

a) Suppose that 𝜆 = 𝜆−1. Then the k-algebra homomorphism

𝑘 [𝑥] → 𝑒𝜆𝑍, 1 ↦→ 𝑒𝜆, 𝑥 ↦→ 𝑋𝜆

is an isomorphism.
b) Suppose that 𝜆 ≠ 𝜆−1. Then the k-algebra homomorphism

𝑏𝜆 :
𝑘 [𝑥, 𝑦]
〈𝑥𝑦〉 → (𝑒𝜆 + 𝑒𝜆−1)𝑍, 1 ↦→ 𝑒𝜆 + 𝑒𝜆−1 , 𝑥 ↦→ 𝑋𝜆, 𝑦 ↦→ 𝑋𝜆−1

is an isomorphism.
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4.2. The normalisation of Spec(𝑍)

4.2.1. Categorical quotients of schemes

Let R
𝑓 ��
𝑔

�� 𝑋 be two morphisms of schemes. Recall that a morphism of schemes 𝜓 : 𝑋 → 𝑌 is said

to be a categorical quotient of X by R if it is a coequaliser of this diagram in the category of schemes.
Given a morphism of locally ringed spaces 𝑓 : 𝑋 → 𝑌 , we write | 𝑓 | : |𝑋 | → |𝑌 | for the underlying

continuous map of topological spaces.

Let R
𝑓 ��
𝑔

�� 𝑋
𝜓 �� 𝑌 be a diagram of schemes such that 𝜓 𝑓 = 𝜓𝑔, and let {𝑌𝑖 : 𝑖 ∈ 𝐼} be an open

covering of Y. For each 𝑖 ∈ 𝐼, form the fibre products 𝑋𝑖 := 𝑋 ×𝑌 𝑌𝑖 and R𝑖 := R ×𝑌 𝑌𝑖 , and consider

the diagram R𝑖

𝑓𝑖 ��
𝑔𝑖

�� 𝑋𝑖
𝜓𝑖 �� 𝑌𝑖 , where 𝑓𝑖 , 𝑔𝑖 and 𝜓𝑖 are the pullbacks of 𝑓 , 𝑔 and 𝜓, respectively.

We denote the category of schemes by Sch, and the category of locally commutatively ringed
topological spaces by LRS.

Lemma 4.2.1. Let R
𝑓 ��
𝑔

�� 𝑋
𝜓 �� 𝑌 be a diagram of schemes such that𝜓 𝑓 = 𝜓𝑔, and let {𝑌𝑖 : 𝑖 ∈ 𝐼}

be an open covering of Y. Suppose that

a) |R|
| 𝑓 | ��
|𝑔 |

�� |𝑋 |
|𝜓 | �� |𝑌 | is a coequaliser diagram of topological spaces,

b) 𝑌𝑖 , 𝑋𝑖 and R𝑖 is affine for all 𝑖 ∈ 𝐼, and

c) O(𝑌𝑖)
𝜓𝑖 �� O(𝑋𝑖)

𝑓𝑖 ��
𝑔𝑖

�� O(R𝑖) is an equaliser diagram of commutative rings for all 𝑖 ∈ 𝐼.

Then R
𝑓 ��
𝑔

�� 𝑋
𝜓 �� 𝑌 is a coequaliser in LRS.3, and𝜓 is a categorical quotient of R

𝑓 ��
𝑔

�� 𝑋 .

Proof. By the construction of colimits in LRS ([DG] Proposition I.1.1.6), the first statement is equivalent
to the following conditions:

– |R|
| 𝑓 | ��
|𝑔 |

�� |𝑋 |
|𝜓 | �� |𝑌 | is a coequaliser diagram of topological spaces;

– O𝑌 �� 𝜓∗O𝑋

𝑓 ��

𝑔
�� (𝜓 𝑓 )∗OR = (𝜓𝑔)∗OR is an equaliser diagram of sheaves of commutative

rings on Y.

The second condition can be checked after restriction to the open subschemes 𝑌𝑖 . By the second
assumption, these and their preimages in X and R all are affine. Hence, these restricted sheaves
are determined by their global sections in these affine schemes. Therefore, this reduces to the third
assumption.

Since Sch is a full subcategory of LRS, the second statement follows from the first. �

We will now give an example of Lemma 4.2.1 in action, which will come in useful later. Consider
the union of two crossing affine lines:

X := Spec
𝑘 [𝑥, 𝑦]
〈𝑥𝑦〉 .

3Note that the functor from schemes to LRS does not respect coequalisers (see [LMB] for an example).
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We will ‘separate’ the two crossing affine lines to form a disjoint union of two affine lines

X ′ := Spec(𝑘 [𝑥] × 𝑘 [𝑦])

and then reglue them together to form X as a quotient of X ′ by a certain relation.
To be more precise, note thatX ′ is the disjoint union of Spec𝑘 [𝑥] and Spec𝑘 [𝑦]. LetS := Spec𝑘 = {𝑠}

be a point, let 𝑎 : S → X ′ be the inclusion of the origin into the first affine line and let 𝑏 : S → X ′ be
the inclusion of the origin into the second affine line.

Consider the k-algebra homomorphism

𝜑 :
𝑘 [𝑥, 𝑦]
〈𝑥𝑦〉 → 𝑘 [𝑥] × 𝑘 [𝑦], 𝜑

(
𝑓 (𝑥, 𝑦)

)
= ( 𝑓 (𝑥, 0), 𝑓 (0, 𝑦)) for any 𝑓 (𝑥, 𝑦) ∈ 𝑘 [𝑥, 𝑦],

and let 𝜃 := Spec(𝜑) : X ′ → X be the corresponding morphism of affine schemes.

Proposition 4.2.2. 𝜃 : X ′ → X is a categorical quotient of S
𝑎 ��
𝑏

�� X ′ .

Proof. We will apply Lemma 4.2.1. The comorphism 𝑎♯ : O(X ′) → O(S) (respectively, 𝑏♯ :
O(X ′) → O(S)) is equal to the composition of the first projection from 𝑘 [𝑥] × 𝑘 [𝑦] onto 𝑘 [𝑥] (re-
spectively, the second projection 𝑘 [𝑥] × 𝑘 [𝑦] onto 𝑘 [𝑦]) with the evaluation-at-zero map 𝑘 [𝑥] → 𝑘 ,
𝑓 (𝑥) ↦→ 𝑓 (0) (respectively, 𝑘 [𝑦] → 𝑘 , 𝑓 (𝑦) ↦→ 𝑓 (0)). The k-algebra homomorphisms 𝑎♯𝜑 and 𝑏♯𝜑
both kill 𝑥 and 𝑦; since these two elements generate O(X ) as a k-algebra, we see that 𝑎♯𝜑 = 𝑏♯𝜑. This
gives us a complex of O(X )-modules

0→ 𝑘 [𝑥, 𝑦]
〈𝑥𝑦〉

𝜑
−→ 𝑘 [𝑥] × 𝑘 [𝑦] 𝑎♯−𝑏♯−→ 𝑘. (12)

Since 〈𝑥〉 ∩ 〈𝑦〉 = 〈𝑥𝑦〉 in 𝑘 [𝑥, 𝑦], the k-algebra homomorphism 𝜑 is injective. If 𝑢 = ( 𝑓 (𝑥), 𝑔(𝑦)) ∈
𝑘 [𝑥] × 𝑘 [𝑦] is such that 𝑎♯ (𝑢) = 𝑏♯ (𝑢), then 𝑓 (0) = 𝑔(0) and then

𝜑
(
𝑓 (𝑥) + 𝑔(𝑦)

)
= ( 𝑓 (𝑥), 𝑓 (0)) + (𝑔(0), 𝑔(𝑦)) = (𝑔(0), 𝑓 (0)) + ( 𝑓 (𝑥), 𝑔(𝑦)) = 𝜑

(
𝑓 (0)
)
+ 𝑢

shows that ker(𝑎♯ − 𝑏♯) = Im(𝜑). So the complex (12) is in fact exact, and this verifies condition c) of
Lemma 4.2.1.

We have already observed that 𝑥, 𝑦 ∈ O(X ) both kill O(S) = 𝑘 when we consider O(S) as an
O(X )-module via 𝑎♯𝜑 = 𝑏♯𝜑. So it is also killed by 𝑥 + 𝑦. Therefore, if we localise the exact sequence
(12) at the element 𝑥 + 𝑦 ∈ O(X ), then we obtain the isomorphism(

𝑘 [𝑥, 𝑦]
〈𝑥𝑦〉

) [
1

𝑥 + 𝑦

]
�−→ 𝑘 [𝑥, 𝑥−1] × 𝑘 [𝑦, 𝑦−1] .

Let 𝑂 := 〈𝑥, 𝑦〉 ∈ X be the intersection point of the two crossing affine lines. Then the restriction
of 𝜃 = Spec(𝜑) to X ′ − {𝑎(𝑠), 𝑏(𝑠)} = Spec

(
𝑘 [𝑥, 𝑥−1] × 𝑘 [𝑦, 𝑦−1]

)
is an isomorphism onto X \{𝑂}.

Since 𝜃 maps both origins in X ′ to 𝑂 ∈ X , we see that |𝜃 | is surjective and that if 𝑝, 𝑞 ∈ |X ′ | satisfy
|𝜃 | (𝑝) = |𝜃 | (𝑞) but 𝑝 ≠ 𝑞, then necessarily 𝑝, 𝑞 ∈ {𝑎(𝑠), 𝑏(𝑠)}. Thus, |X | is obtained as a set by
identifying 𝑎(𝑠) with 𝑏(𝑠) in |X ′ |.

Finally, both |X ′ | and |X | carry the cofinite Zariski topologies, and the quotient topology on

|X ′ |/(𝑎(𝑠) ∼ 𝑏(𝑠)) is still the cofinite topology. Hence, |S |
|𝑎 | ��
|𝑏 |

�� |X ′ | → |X | is a coequaliser

diagram of topological spaces, as required for condition a) of Lemma 4.2.1. �
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4.2.2. The normalisation of Spec(𝑍)
We return to the notation of §4.1.4.

Definition 4.2.3.

a) Let Ξ = Spec(𝑍).
b) Let 𝑍 ′ := 𝑘 [Ω] [𝑡], where t is a formal variable, and let Ξ′ := Spec𝑍 ′.
c) Let 𝜑 : 𝑍 → 𝑍 ′ be the k-algebra homomorphism defined by

𝜑(𝑋𝜆) = 𝑒𝜆𝑡 for all 𝜆 ∈ Ω̂.

d) Let 𝜃 : Ξ′ → Ξ be defined by 𝜃 = Spec(𝜑).

Note that Ξ′ is the disjoint union of |Ω̂| = 𝑞 − 1 affine lines Ξ′𝜆 := Spec𝑘 [𝑡𝜆], where 𝑡𝜆 := 𝑒𝜆𝑡 ∈ 𝑍 ′.
We call Ξ′𝜆 the 𝜆-component of Ξ′. We denote the image of the origin 〈𝑡𝜆〉 ∈ Ξ′𝜆 inside Ξ′ by 𝑂𝜆.
Equivalently, 𝑂𝜆 is the maximal ideal 〈1 − 𝑒𝜆, 𝑡〉 of 𝑍 ′.

Definition 4.2.4.

a) Let Ξsing := {𝑠1, 𝑠2, · · · , 𝑠 𝑞−3
2
} be the disjoint union of 𝑞−3

2 copies of Spec𝑘 .
b) Define 𝑎 : Ξsing → Ξ′ and 𝑏 : Ξsing → Ξ′ to be the closed embeddings, given by

𝑎(𝑠 𝑗 ) = 𝑂id 𝑗 and 𝑏(𝑠 𝑗 ) = 𝑂id− 𝑗 for all 𝑗 = 1, · · · , 𝑞 − 3
2

.

The notation is intended to indicate that Ξsing is a copy of the singular locus of the scheme Ξ: indeed,
in view of the decomposition (11) and Proposition 4.1.5.b, Ξ contains 𝑞−3

2 copies of the pair of crossing
lines Spec 𝑘 [𝑥,𝑦 ]〈𝑥𝑦〉 , so the singular locus of Ξ consists of 𝑞−3

2 closed points.

Proposition 4.2.5. 𝜃 : Ξ′ → Ξ is a categorical quotient of Ξsing
𝑎 ��
𝑏

�� Ξ′ .

Proof. The decomposition of 𝑍 = O(Ξ) as a direct product of nonunital subrings given in Equation
(11) means that Ξ decomposes into the disjoint union of connected components

Ξ = Ξ0 ∪ Ξ 𝑞−1
2
∪

𝑞−3
2∐
𝑗=1

Ξ 𝑗 ,− 𝑗 , (13)

where these connected components are defined by

Ξ0 := Spec𝑒1𝑍, Ξ 𝑞−1
2

:= Spec𝑒
id

𝑞−1
2
𝑍, and Ξ 𝑗 ,− 𝑗 := Spec(𝑒id 𝑗 + 𝑒id− 𝑗 )𝑍

for all 𝑗 = 1, · · · , 𝑞−3
2 . On the other hand, we can write

Ξ′ = Ξ1 ∪ Ξ
id

𝑞−1
2

∪

𝑞−3
2∐
𝑗=1
(Ξ′id 𝑗 ∪ Ξ′id− 𝑗 ). (14)

Fix 𝑗 = 1, · · · , 𝑞−3
2 . The morphism 𝜃 maps (Ξ′

id 𝑗 ∪ Ξ′
id− 𝑗
) onto Ξ 𝑗 ,− 𝑗 ; let 𝜃 𝑗 denote the restriction of 𝜃

to (Ξ′
id 𝑗 ∪ Ξ′id− 𝑗 ). Then we have the commutative diagram of affine schemes
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Ξ′
id 𝑗 ∪ Ξ′id− 𝑗
𝛼𝑗

��

𝜃 𝑗 �� Ξ 𝑗 ,− 𝑗

𝛽 𝑗

��
X ′

𝜃0
�� X

, (15)

where 𝜃0 : X ′ → X is the morphism that was denoted 𝜃 in Proposition 4.2.2, 𝛽 𝑗 := Spec(𝑏id 𝑗 ) is the
isomorphism of affine schemes defined by the isomorphism 𝑏id 𝑗 from Proposition 4.1.5.b, and 𝛼 𝑗 is the
isomorphism of affine schemes defined by the k-algebra isomorphism

𝛼♯𝑗 : 𝑘 [𝑥] × 𝑘 [𝑦] −→ 𝑘 [𝑡id 𝑗 ] × 𝑘 [𝑡id− 𝑗 ]

given by 𝛼♯𝑗 (𝑥) = 𝑡id 𝑗 and 𝛼♯𝑗 (𝑦) = 𝑡id− 𝑗 . This gives us the commutative diagram of schemes

{𝑠 𝑗 }
𝑎 𝑗 ��
𝑏 𝑗

��

�
��

Ξ′
id 𝑗 ∪ Ξ′id− 𝑗
𝛼𝑗 �

��

𝜃 𝑗 �� Ξ 𝑗 ,− 𝑗

𝛽 𝑗�
��

S
𝑎0 ��
𝑏0

�� X ′
𝜃0

�� X

, (16)

where 𝑎0 and 𝑏0 are the morphisms that were denoted a and b in the statement of Proposition 4.2.2.
Now, we can apply Proposition 4.2.2 to see that 𝜃 𝑗 is a coequaliser of 𝑎 𝑗 , 𝑏 𝑗 .

Note that the morphism 𝜃 sendsΞ′1 (respectively,Ξ′
id

𝑞−1
2

) isomorphically ontoΞ0 (respectively,Ξ′𝑞−1
2

).

Taking coproducts of the diagrams (16) over 𝑗 = 1, · · · , 𝑞−3
2 and bearing in mind the decompositions

(13) and (14) now gives the result in view of Lemma A.3. �

4.2.3. The nonsingular locus of Ξ
Let 𝑉 (𝑡) denote the set of 𝑞 − 1 closed points in Ξ′ consisting of the disjoint union of the origins in the
𝑞 − 1 affine lines Ξ′𝜆 = Spec𝑘 [𝑡𝜆].

Lemma 4.2.6. The morphism 𝜃 restricts to an isomorphism

𝜃 : Ξ′ −𝑉 (𝑡) �−→ Ξ −𝑉 (𝜁).

Proof. Let 𝜆 ∈ Ω̂, and write 𝜆 = id 𝑗 for some 𝑗 = 0, · · · , 𝑞 − 2. Suppose first that 𝑗 ≠ 0 and 𝑗 ≠ 𝑞−1
2 .

Then the image of 𝜁 in O(Ξ𝜆,𝜆−1 ) under the restriction map 𝑍 = O(Ξ) → O(Ξ 𝑗 ,− 𝑗 ) is (𝑒𝜆 + 𝑒𝜆−1)𝜁 ,
which is equal to 𝑋𝜆 + 𝑋𝜆−1 by Lemma 4.1.4.b. We see that 𝛽 𝑗 (𝑉 (𝜁) ∩ Ξ 𝑗 ,− 𝑗 ) is the origin O in the pair
of crossing lines X . Likewise, if 𝑗 = 0 or 𝑗 = 𝑞−1

2 , Lemma 4.1.4.c implies that 𝑉 (𝜁) ∩ Ξ 𝑞−1
2

= 𝑉 (𝑒𝜆𝜁)
is the origin in the affine line Ξ 𝑗 . So 𝑉 (𝜁) ⊂ Ξ consists of precisely 𝑞−3

2 + 2 = 𝑞+1
2 closed points and

contains the singular locus of Ξ, whereas𝑉 (𝑡) consists of |Spec𝑘 [Ω] | = |Ω̂| = 𝑞 − 1 closed points in Ξ′.
The result now follows from the commutative diagram (15), together with the observation we made

in the proof of Proposition 4.2.2 that 𝜃0 restricts to an isomorphism between X ′\{𝑎0 (𝑠), 𝑏0(𝑠)} and
X \{𝑂}. �

Corollary 4.2.7. The map 𝜃♯ : 𝑍𝜁 = O(Ξ−𝑉 (𝜁)) �−→ O(Ξ′ −𝑉 (𝑡)) = 𝑘 [Ω] [𝑡, 𝑡−1] is a k-algebra
isomorphism which sends 𝜁 to t.

Of course, 𝜃♯ restricts to the basic map 𝜑 : 𝑍 → 𝑍 ′ on Z from Definition 4.2.3.c.
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Definition 4.2.8. For each 𝜆 ∈ Ω̂, we define 𝜖𝜆 := (𝜃♯)−1(𝑒𝜆).

The family {𝜖𝜆 : 𝜆 ∈ Ω̂} form a complete set of primitive idempotents in 𝑍𝜁 .

Lemma 4.2.9. We have 𝜖𝜆 = 𝑋𝜆

𝜁 for all 𝜆 ∈ Ω̂.

Proof. Since 𝜁 is a unit in 𝑍𝜁 , it’s enough to show 𝜖𝜆𝜁
2 = 𝑋𝜆𝜁 . Since 𝜃♯ is a ring isomorphism that

restricts to 𝜑 on Z, it is enough to show that the equation 𝑒𝜆𝜑(𝜁)2 = 𝜑(𝑋𝜆𝜁) holds in 𝑘 [Ω] [𝑡, 𝑡−1].
However, using Lemma 4.1.4.d together with Definition 4.2.3.c, we have

𝜑(𝜁) = 𝜑
���
∑
𝛼∈Ω̂

𝑋𝛼
��� = ���

∑
𝛼∈Ω̂

𝑒𝛼𝑡
��� = 𝑡 (17)

and therefore 𝑒𝜆𝜑(𝜁)2 = 𝑒𝜆𝑡2 = (𝑒𝜆𝑡)𝑡 = 𝜑(𝑋𝜆)𝜑(𝜁) = 𝜑(𝑋𝜆𝜁) as required. �

Corollary 4.2.10. As a 𝑘 [𝜁, 𝜁−1]-module, 𝑍𝜁 decomposes as follows:

𝑍𝜁 =
⊕
𝜆∈Ω̂

𝜖𝜆𝑘 [𝜁, 𝜁−1] .

Proof. The isomorphism 𝜃♯ : 𝑍𝜁
�−→ 𝑘 [Ω] [𝑡, 𝑡−1] given by Lemma 4.2.6 sends 𝜁 to t by Equation (17),

and it sends 𝜖𝜆 ∈ 𝑍𝜁 to 𝑒𝜆 ∈ 𝑘 [Ω] [𝑡, 𝑡−1] for each 𝜆 ∈ Ω̂. Since {𝑒𝜆 : 𝜆 ∈ Ω̂} forms a 𝑘 [𝑡, 𝑡−1]-module
basis for 𝑘 [Ω] [𝑡, 𝑡−1], it follows that {𝜖𝜆 : 𝜆 ∈ Ω̂} forms a 𝑘 [𝜁, 𝜁−1]-module basis for 𝑍𝜁 . �

4.3. Bimodule annihilators

4.3.1. Some generalities about annihilators and bimodules
Definition 4.3.1. Let A be a k-algebra, and let 𝜙 : 𝐴 → 𝐴 be a k-algebra automorphism. Let M be an
A-bimodule. We write 𝑀𝜙 to denote the (𝐴, 𝐴)-bimodule M, with action given by

𝑎 · 𝑚 · 𝑏 = 𝑎 𝑚 𝜙(𝑏) for all 𝑎, 𝑏 ∈ 𝐴, 𝑚 ∈ 𝑀

and we call 𝑀𝜙 the right 𝜙-twist of M.

Thus, the left A-action on 𝑀𝜙 is the usual one, whereas the right A-action is twisted by 𝜙.

Lemma 4.3.2. Let A be a k-algebra, let M be an (𝐴, 𝐴)-bimodule and let 𝜙 : 𝐴 → 𝐴 be a k-algebra
automorphism. Then

Ann𝐴⊗𝑘 𝐴(𝑀𝜙) = (1 ⊗ 𝜙−1) (Ann𝐴⊗𝑘 𝐴(𝑀)).

Proof. Let 𝑥 =
∑𝑛
𝑖=1 𝑎𝑖 ⊗ 𝑏𝑖 ∈ 𝐴 ⊗𝑘 𝐴. Then 𝑥 ·𝑀𝜙 = 0 if and only if

∑𝑛
𝑖=1 𝑎𝑖𝑚𝜙(𝑏𝑖) = 0 for all 𝑚 ∈ 𝑀 .

This is equivalent to (1 ⊗ 𝜙) (𝑥) · 𝑀 = 0, and the result follows. �

Lemma 4.3.3. Let A be a k-algebra with centre Z, and let mult𝑍 : 𝑍 ⊗𝑘 𝑍 → 𝑍 be the multiplication
map. Then

Ann𝑍 ⊗𝑘𝑍 (𝐴) = Ann𝑍 ⊗𝑘𝑍 (𝑍) = Ann𝑍 ⊗𝑘𝑍 (1) = ker mult𝑍 .

Proof. For an element 𝑥 =
∑𝑛
𝑖=1 𝑎𝑖 ⊗ 𝑏𝑖 ∈ 𝑍 ⊗𝑘 𝑍 , we have 𝑥 · 1 =

𝑛∑
𝑖=1

𝑎𝑖𝑏𝑖 = mult𝑍 (𝑥). This shows the

last equality. Since 𝐴 ⊇ 𝑍 � 1, we have Ann𝑍 ⊗𝑘𝑍 (𝐴) ⊆ Ann𝑍 ⊗𝑘𝑍 (𝑍) ⊆ Ann𝑍 ⊗𝑘𝑍 (1) = ker mult𝑍 by
the above. Let 𝑥 =

∑𝑛
𝑖=1 𝑎𝑖 ⊗ 𝑏𝑖 ∈ ker mult𝑍 , and let 𝑐 ∈ 𝐴. Then because 𝑎𝑖 , 𝑏𝑖 are central in A, we

have 𝑥 · 𝑐 =
∑𝑛
𝑖=1 𝑎𝑖𝑐𝑏𝑖 =

(∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖

)
𝑐 = mult𝑍 (𝑥)𝑐 = 0. Hence, ker mult𝑍 ⊆ Ann𝑍 ⊗𝑘𝑍 (𝐴). �
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Lemma 4.3.4. Let A be a commutative k-algebra, and let mult𝐴 : 𝐴 ⊗𝑘 𝐴 → 𝐴 be the multiplication
map.

a) ker mult𝐴 is generated as an ideal in 𝐴 ⊗𝑘 𝐴 by {𝑎 ⊗ 1 − 1 ⊗ 𝑎 : 𝑎 ∈ 𝐴}.
b) Suppose that 𝑎1, · · · , 𝑎𝑚 generate A as a k-algebra. Then {𝑎𝑖 ⊗ 1− 1 ⊗ 𝑎𝑖 : 𝑖 = 1, · · · , 𝑚} generates

ker mult𝐴 as an ideal in 𝐴 ⊗𝑘 𝐴.

Proof. a) Certainly, mult𝐴 kills 𝑎 ⊗ 1 − 1 ⊗ 𝑎 for all 𝑎 ∈ 𝐴. Conversely, if 𝑥 =
∑𝑛
𝑖=1 𝑎𝑖 ⊗ 𝑏𝑖 ∈ 𝐴 ⊗ 𝐴 is

such that mult𝐴(𝑥) =
∑𝑛
𝑖=1 𝑎𝑖𝑏𝑖 = 0, then

𝑥 =
𝑛∑
𝑖=1
(𝑎𝑖 ⊗ 𝑏𝑖 − 1 ⊗ 𝑎𝑖𝑏𝑖) =

𝑛∑
𝑖=1
(𝑎𝑖 ⊗ 1 − 1 ⊗ 𝑎𝑖) (1 ⊗ 𝑏𝑖)

lies in the ideal in 𝐴 ⊗ 𝐴 generated by {𝑎 ⊗ 1 − 1 ⊗ 𝑎 : 𝑎 ∈ 𝐴}.
b) Write 𝜕 (𝑎) = 𝑎 ⊗ 1 − 1 ⊗ 𝑎 for 𝑎 ∈ 𝐴. Then for all 𝑎, 𝑏 ∈ 𝐴 we have

𝜕 (𝑎𝑏) = 𝑎𝑏 ⊗ 1 − 1 ⊗ 𝑎𝑏 = (𝑎 ⊗ 1 − 1 ⊗ 𝑎) (𝑏 ⊗ 1) + (1 ⊗ 𝑎) (𝑏 ⊗ 1 − 1 ⊗ 𝑏)
= 𝜕 (𝑎) (𝑏 ⊗ 1) + (1 ⊗ 𝑎)𝜕 (𝑏).

Hence, the ideal generated by {𝜕 (𝑎𝑖) : 𝑖 = 1, · · · , 𝑚} contains 𝜕 (𝑎𝑘1
1 · · · 𝑎

𝑘𝑚
𝑚 ) for all nonnegative

integers 𝑘1, · · · , 𝑘𝑚. Since 𝑎 ↦→ 𝜕 (𝑎) is k-linear, and since 𝐴 = 𝑘 [𝑎1, · · · , 𝑎𝑚] by assumption, this
ideal contains 𝜕 (𝑎) for all 𝑎 ∈ 𝐴. Hence, it contains ker mult𝐴 by part a). The reverse inclusion is clear
because mult𝐴(𝜕 (𝑎𝑖)) = 0 for all i. �

4.3.2. The bimodule (𝐻𝜁 ⊕𝐻𝜁 ) [𝜅,𝑧,𝜇]
𝐻𝜁 𝜏0⊕𝐻𝜁 𝜏1

Recall the canonical involution ι : 𝐻 → 𝐻 from [OS22], §2.4.3: it is a self-inverse k-algebra automor-
phism of H that fixes the subalgebra 𝑘 [Ω] pointwise and satisfies

ι (𝜏0) = −𝑒1 − 𝜏0 and ι (𝜏1) = −𝑒1 − 𝜏1.

Lemma 4.3.5. ι fixes the centre Z of H pointwise.

Proof. The decomposition (11) together with Proposition 4.1.5 implies that the central elements {𝑋𝜆 :
𝜆 ∈ Ω̂} generate Z as a k-algebra. Since ι is a 𝑘 [Ω]-linear involution, it therefore suffices to check that
ι fixes each 𝑋𝜆. Now, if 𝜆 ≠ 1, then since 𝑒1𝑒𝜆 = 𝑒1𝑒𝜆−1 = 0 by Equation (10), we compute

ι (𝑋𝜆) = ι (𝑒𝜆𝜏0𝜏1 + 𝑒𝜆−1𝜏1𝜏0) = 𝑒𝜆 (−𝑒1 − 𝜏0) (−𝑒1 − 𝜏1) + 𝑒𝜆−1 (−𝑒1 − 𝜏1) (−𝑒1 − 𝜏0) = 𝑋𝜆.

On the other hand, since 𝜁 = (𝜏0 + 𝑒1) (𝜏1 + 𝑒1) + 𝜏1𝜏0 and since ι fixes 𝑒1 ∈ 𝑘 [Ω], we have

ι (𝑋1 ) = 𝑒1 ι (𝜏0 + 𝑒1) ι (𝜏1 + 𝑒1) + ι (𝜏1) ι (𝜏0) = 𝑒1𝜏0𝜏1 + (−𝑒1 − 𝜏1) (−𝑒1 − 𝜏0) = 𝑒1 𝜁 = 𝑋1 ,

where we used the second formula for 𝜁 from Lemma 4.1.2. �

Let 𝜅 : 𝐻 → 𝑅 be a homomorphism of k-algebras, let 𝑧 ∈ 𝑍 (𝑅) and let 𝜇 ∈ Ω̂. Then in [OS22],
§2.4.7, Ollivier and Schneider explain how to use these parameters to endow the left R-module 𝑅⊕𝑅with
the structure of a right H-module, in fact forming an (𝑅, 𝐻)-bimodule, that they denote (𝑅⊕ 𝑅) [𝜅, 𝑧, 𝜇].
The left R-action on (𝑅 ⊕ 𝑅) [𝜅, 𝑧, 𝜇] is the obvious one, but H acts from the right as follows:

(𝑟1, 𝑟2)ℎ := (𝑟1, 𝑟2)𝜅2(ℎ) for all 𝑟1, 𝑟2 ∈ 𝑅, ℎ ∈ 𝐻.

Here, 𝜅2 : 𝐻 → 𝑀2 (𝑅) is the explicit k-algebra homomorphism into the ring of 2 × 2-matrices with
entries in R from [OS22] §2.4.7. In this generality, we will explicitly compute the right action of Z on
this bimodule.
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Lemma 4.3.6. We have 𝜅2 (𝑋𝛼) = 𝑧2
(
𝜅(𝑒𝛼−1𝜇𝜏0𝜏1) 0

0 𝜅(𝑒𝛼𝜇−1𝜏1𝜏0)

)
for all 𝛼 ∈ Ω̂.

Proof. Recall from [OS22]§2.4.7 that 𝜅2 (𝜏𝜔) = 𝑀𝜔 =

(
𝜇−1 (𝜔)𝜅(𝜏𝜔) 0

0 𝜇(𝜔)𝜅(𝜏𝜔)

)
. Then

𝜅2(𝑒𝛼) = −
∑
𝜔∈Ω

𝛼−1(𝜔)𝜅2(𝜏𝜔) = −
∑
𝜔∈Ω

𝛼−1(𝜔)𝑀𝜔

=
���
−
∑
𝜔∈Ω

𝛼−1(𝜔)𝜇−1(𝜔)𝜅(𝜏𝜔) 0

0 −
∑
𝜔∈Ω

𝛼−1(𝜔)𝜇(𝜔)𝜅(𝜏𝜔)
���

=

(
𝜅(𝑒𝛼𝜇) 0

0 𝜅(𝑒𝛼𝜇−1 )

) (18)

using Equation (9). On the other hand, we have

𝜅2 (𝜏0) = 𝑀0 =

(
−𝜅(𝑒𝜇) 0
𝑧𝜅(𝜏1) 0

)
and 𝜅2 (𝜏1) = 𝑀1 =

(
0 𝑧𝜅(𝜏0)
0 −𝜅(𝑒𝜇−1 )

)
.

Then using Equation (18) together with Equation (10), we compute

𝜅2 (𝑒𝛼𝜏0𝜏1) =
(
𝜅(𝑒𝛼𝜇) 0

0 𝜅(𝑒𝛼𝜇−1 )

) (
−𝜅(𝑒𝜇) 0
𝑧𝜅(𝜏1) 0

) (
0 𝑧𝜅(𝜏0)
0 −𝜅(𝑒𝜇−1 )

)
=

(
0 −𝑧𝜅(𝑒𝛼𝜇𝑒𝜇𝜏0)
0 𝑧2𝜅(𝑒𝛼𝜇−1𝜏1𝜏0)

)
=

(
0 −𝛿𝛼1 𝑧𝜅(𝑒𝜇𝜏0)
0 𝑧2𝜅(𝑒𝛼𝜇−1𝜏1𝜏0)

)
.

Similarly,

𝜅2 (𝑒𝛼−1𝜏1𝜏0) =
(
𝜅(𝑒𝛼−1𝜇) 0

0 𝜅(𝑒𝛼−1𝜇−1)

) (
0 𝑧𝜅(𝜏0)
0 −𝜅(𝑒𝜇−1 )

) (
−𝜅(𝑒𝜇) 0
𝑧𝜅(𝜏1) 0

)
=

(
𝑧2𝜅(𝑒𝛼−1𝜇𝜏0𝜏1) 0
−𝑧𝜅(𝑒𝛼−1𝜇−1𝑒𝜇−1𝜏1) 0

)
=

(
𝑧2𝜅(𝑒𝛼−1𝜇𝜏0𝜏1) 0
−𝑧𝛿𝛼1𝜅(𝑒𝜇−1𝜏1) 0

)
.

Suppose first that 𝛼 ≠ 1 so that 𝑋𝛼 = 𝑒𝛼𝜏0𝜏1 + 𝑒𝛼−1𝜏1𝜏0. Then 𝛿𝛼1 = 0, and adding the last two
displayed equations together gives the result in this case.

Suppose now that 𝛼 = 1 so that 𝑋1 = 𝑒1𝜁 = 𝑒1𝜏0𝜏1 + 𝑒1𝜏1𝜏0 + 𝑒1 (𝜏0 + 𝜏1 + 1). Adding the above
two equations in this case gives

𝜅2 (𝑒1𝜏0𝜏1 + 𝑒1𝜏1𝜏0) = 𝑧2
(
𝜅(𝑒𝜇𝜏0𝜏1) 0

0 𝜅(𝑒𝜇−1𝜏1𝜏0)

)
+
(

0 −𝑧𝜅(𝑒𝜇𝜏0)
−𝑧𝜅(𝑒𝜇−1𝜏1) 0

)
. (19)

Since 𝜅2 (𝑒1) =
(
𝜅(𝑒𝜇) 0

0 𝜅(𝑒𝜇−1 )

)
and 𝜅2 (𝜏0 + 𝜏1 + 1) =

(
𝜅(1 − 𝑒𝜇) 𝑧𝜅(𝜏0)
𝑧𝜅(𝜏1) 𝜅(1 − 𝑒𝜇−1)

)
, we have

𝜅2 (𝑒1 (𝜏0 + 𝜏1 + 1)) =
(

0 𝑧𝜅(𝑒𝜇𝜏0)
𝑧𝜅(𝑒𝜇−1𝜏1) 0

)
. (20)

Adding together Equations (19) and (20) finishes the calculation. �

Corollary 4.3.7. 𝜅2 (𝜁) = 𝑧2
(
𝜅(𝜏0𝜏1) 0

0 𝜅(𝜏1𝜏0)

)
.

Proof. Note that
∑
𝛼∈Ω̂

𝑒𝛼−1𝜇 =
∑
𝜆∈Ω̂

𝑒𝜆 = 1. Now, apply Lemma 4.3.6 and Lemma 4.1.4.d. �
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Now, we specialise slightly and take R to be the central localization 𝐻𝜁 of H at 𝜁 . Let 𝜅 be the
composition of ι : 𝐻 → 𝐻 with the natural map 𝐻 ↩→ 𝐻𝜁 , noting that the latter map is an injection as
a consequence of [OS18] Corollary 3.4, and set

𝑧 := −𝜏𝜔−1 𝜁
−1 ∈ 𝐻𝜁 where 𝜔−1 =

(
−1 0
0 −1

)
𝑇1 ∈ Ω.

Then we have at our disposal the (𝐻𝜁 , 𝐻)-bimodule (𝐻𝜁 ⊕ 𝐻𝜁 ) [𝜅, 𝑧, 𝜇].

Lemma 4.3.8. 𝐻𝜁 𝜏0 ⊕ 𝐻𝜁 𝜏1 is an (𝐻𝜁 , 𝐻)-submodule of (𝐻𝜁 ⊕ 𝐻𝜁 ) [𝜅, 𝑧, 𝜇].

Proof. When 𝜇 = id2 and 𝑘 = F𝑝 , this is proved in [OS22] § 3.7.3.2. The computation for general 𝜇 is
entirely analogous and does not use the restriction on k. �

Definition 4.3.9. Let 𝐵𝜇 := (𝐻𝜁 ⊕𝐻𝜁 ) [𝜅,𝑧,𝜇]
𝐻𝜁 𝜏0⊕𝐻𝜁 𝜏1

, an (𝐻𝜁 , 𝐻)-bimodule.

We will now calculate the right action of Z on this bimodule.

Proposition 4.3.10.

a) We have 𝑣𝜁 = 𝜁−1𝑣 for all 𝑣 ∈ 𝐵𝜇.
b) Let 1 := (1, 1) ∈ 𝐵𝜇. Then 1𝜖𝛼 = 𝜖𝛼−1𝜇1 for all 𝛼 ∈ Ω̂.

Proof. a) We have 𝑧 = −𝜏𝜔−1 𝜁
−1 so 𝑧2 = 𝜁−2 because 𝜁 is central and (𝜔−1)2 = 𝜔1 = 1. Note that

𝜅(𝜏0𝜏1) = ι (𝜏0𝜏1) = (𝜏0 + 𝑒1) (𝜏1 + 𝑒1) = 𝜁 − 𝜏1𝜏0 ≡ 𝜁mod 𝐻𝜏0, and similarly 𝜅(𝜏1𝜏0) = 𝜁 − 𝜏0𝜏1 ≡ 𝜁
mod 𝐻𝜏1, by Lemma 4.1.2. Writing 𝑣 = (𝑣1, 𝑣2), we apply Corollary 4.3.7:

(𝑣1, 𝑣2)𝜁 = (𝑣1, 𝑣2)𝜅2(𝜁) = (𝑣1, 𝑣2)𝜁−2
(
𝜁 − 𝜏1𝜏0 0

0 𝜁 − 𝜏0𝜏1

)
= (𝑣1𝜁−1, 𝑣2𝜁−1) = 𝜁−1 (𝑣1, 𝑣2).

b) Recall that 𝜖𝛼 = 𝑋𝛼/𝜁 by Lemma 4.2.9. We will show that

𝜁21𝑋𝛼 = 𝑋𝛼−1𝜇1. (21)

Applying Lemma 4.3.6, we calculate

(1, 1)𝜅2(𝑋𝛼) = (1, 1)𝑧2
(
𝜅(𝑒𝛼−1𝜇𝜏0𝜏1) 0

0 𝜅(𝑒𝛼𝜇−1𝜏1𝜏0)

)
= 𝜁−2

(
𝑒𝛼−1𝜇 ι (𝜏0𝜏1), 𝑒𝛼𝜇−1 ι (𝜏1𝜏0)

)
. (22)

Next,

ι (𝜏0𝜏1) = (−𝜏0 − 𝑒1) (−𝜏1 − 𝑒1) = 𝜏0𝜏1 + 𝑒1 (𝜏0 + 𝜏1 + 1), and
ι (𝜏1𝜏0) = (−𝜏1 − 𝑒1) (−𝜏0 − 𝑒1) = 𝜏1𝜏0 + 𝑒1 (𝜏0 + 𝜏1 + 1). (23)

Suppose first that 𝛼 ≠ 𝜇. Then since 𝑒𝛼−1𝜇𝑒1 = 𝑒𝛼𝜇−1𝑒1 = 0 by Equation (10),

1𝑋𝛼 = (1, 1)𝜅2(𝑋𝛼) = 𝜁−2
(
𝑒𝛼−1𝜇𝜏0𝜏1, 𝑒𝛼𝜇−1𝜏1𝜏0

)
.

On the other hand, using Definition 4.1.3, we have the congruences

𝑋𝛼−1𝜇 = 𝑒𝛼−1𝜇𝜏0𝜏1 + 𝑒𝛼𝜇−1𝜏1𝜏0 ≡
{
𝑒𝛼−1𝜇𝜏0𝜏1 mod 𝐻𝜏0
𝑒𝛼𝜇−1𝜏1𝜏0 mod 𝐻𝜏1.

Putting these together shows that

𝑋𝛼−1𝜇1 =
(
𝑋𝛼−1𝜇, 𝑋𝛼−1𝜇

)
=
(
𝑒𝛼−1𝜇𝜏0𝜏1, 𝑒𝛼𝜇−1𝜏1𝜏0

)
= 𝜁21𝑋𝛼
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as required. Suppose now that 𝛼 = 𝜇. Then applying Equations (22) and (23) again, we have

𝜁21𝑋𝜇 = (𝑒1 ι (𝜏0𝜏1), 𝑒1 ι (𝜏1𝜏0)) = (𝑒1𝜏0𝜏1 + 𝑒1𝜏1 + 𝑒1 , 𝑒1𝜏1𝜏0 + 𝑒1𝜏0 + 𝑒1),

whereas since 𝑋𝛼−1𝜇 = 𝑋1 = 𝑒1𝜁 = 𝑒1 (𝜏0𝜏1 + 𝜏1𝜏0 + 𝜏0 + 𝜏1 + 1) in this case, we see that

𝑋11 = (𝑋1 , 𝑋1) = (𝑒1𝜏0𝜏1 + 𝑒1𝜏1 + 𝑒1 , 𝑒1𝜏1𝜏0 + 𝑒1𝜏0 + 𝑒1).

Having shown that Equation (21) holds, we use part a) to obtain

1𝜖𝛼 =
(
1𝜁−1

)
𝑋𝛼 = 𝜁1𝑋𝛼 = 𝜁−1

(
𝜁21𝑋𝛼

)
= 𝜁−1𝑋𝛼−1𝜇1 = 𝜖𝛼−1𝜇1. �

4.3.3. The annihilator of 𝐵𝜇 in 𝑍𝜁 ⊗ 𝑍𝜁
Recall from Corollary 4.2.7 that 𝑍𝜁 is isomorphic to 𝑘 [Ω] [𝑡, 𝑡−1]. Noting that 𝑘 [Ω] is isomorphic to
the direct product of |Ω̂| = 𝑞 − 1 copies of the ground field k, the following statement is clear:

Lemma 4.3.11. There is a unique k-algebra automorphism 𝜙𝜇 : 𝑍𝜁 → 𝑍𝜁 such that

𝜙𝜇 (𝜁) = 𝜁−1 and 𝜙𝜇 (𝜖𝛼) = 𝜖𝜇/𝛼 for all 𝛼 ∈ Ω̂.

Note that this 𝜙𝜇 is in fact an involution.

Proposition 4.3.12. The map 𝜓 : (𝐻𝜁 )𝜙𝜇 → 𝐵𝜇 given by 𝜓(ℎ) = ℎ1 for all ℎ ∈ 𝐻𝜁 is an injective
homomorphism of (𝐻𝜁 , 𝑍𝜁 )-bimodules.

Proof. The map 𝜓 is clearly left 𝐻𝜁 -linear. Using Proposition 4.3.10, we have

𝜓(ℎ)𝜁 = ℎ1𝜁 = ℎ𝜁−11 = 𝜓(ℎ𝜙𝜇 (𝜁)) and 𝜓(ℎ)𝜖𝛼 = ℎ1𝜖𝛼 = ℎ𝜖𝜇/𝛼1 = 𝜓(ℎ𝜙𝜇 (𝜖𝛼))

for any 𝛼 ∈ Ω̂. After Corollary 4.2.7, we know that 𝑍𝜁 is generated as a k-algebra by the 𝜖𝛼’s, 𝜁 and
𝜁−1. It follows that 𝜓 is right 𝑍𝜁 -linear.

We have ker𝜓 = 𝐻𝜁 𝜏0∩𝐻𝜁 𝜏1 by definition of 𝐵𝜇. This is equal to (𝐻𝜏0∩𝐻𝜏1)𝜁 . But 𝐻𝜏0∩𝐻𝜏1 = 0
by Lemma 4.3.13 below. �

Lemma 4.3.13. The sum of left ideals 𝐻𝜏0 + 𝐻𝜏1 is direct.

Proof. Recall that {𝜏𝑤 : 𝑤 ∈ 𝑊} forms a basis for H as a k-vector space. Now,𝑊 contains Ω as a normal
subgroup and the images of 𝑠0 and 𝑠1 in 𝑊/Ω generate a copy of the infinite dihedral group. It follows
that every element of 𝑊 has a unique representation in the form 𝜔𝑤, where 𝜔 ∈ Ω and w is a reduced
word in 𝑠0 and 𝑠1. Therefore, the reduced words in 𝜏0 and 𝜏1 form a basis for H as a 𝑘 [Ω]-module.
Every nonempty such word ends in exactly one of either 𝜏0 or 𝜏1, which gives the result. �

Now, we study coker 𝜓.

Lemma 4.3.14. The left H-module 𝐻/(𝐻𝜏0 + 𝐻𝜏1) is killed by 𝜁 (𝜁 − 1).

Proof. The fact that {𝜏𝑤 : 𝑤 ∈ 𝑊} spans H implies that 𝐻 = 𝑘 [Ω] ⊕ (𝐻𝜏0 + 𝐻𝜏1) as a k-vector
space. Therefore, it is enough to show that 𝜁 (𝜁 − 1)𝑒𝜆 ∈ 𝐻𝜏0 + 𝐻𝜏1 for all 𝜆 ∈ Ω̂. However, 𝜁 =
𝜏0𝜏1 +𝜏1𝜏0 + 𝑒1𝜏1 + 𝑒1𝜏0 + 𝑒1 ≡ 𝑒1mod 𝐻𝜏0 +𝐻𝜏1, so already 𝜁𝑒𝜆 ≡ 0mod 𝐻𝜏0 +𝐻𝜏1 if 𝜆 ≠ 1, whereas
if 𝜆 = 1, then 𝜁 (𝜁 − 1)𝑒1 = 𝜁 (𝜁𝑒1 − 𝑒1) ≡ 𝜁 (𝑒2

1 − 𝑒1) = 0mod 𝐻𝜏0 + 𝐻𝜏1. �

Corollary 4.3.15. There exist elements 𝑢, 𝑣 ∈ 𝐻 such that 𝜁 (𝜁 − 1) = 𝑢𝜏0 + 𝑣𝜏1.

Proposition 4.3.16. We have (𝜁 − 1) · coker 𝜓 = 0.
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Proof. Let (𝑎, 𝑏) ∈ 𝐵𝜇 for some 𝑎, 𝑏 ∈ 𝐻𝜁 . Define 𝑐 := 𝑎𝑣𝜏1+𝑏𝑢𝜏0, where 𝑢, 𝑣 ∈ 𝐻 given by Corollary
4.3.15. Then

𝑐 = 𝑎(𝜁 (𝜁 − 1) − 𝑢𝜏0) + 𝑏𝑢𝜏0 ≡ 𝑎𝜁 (𝜁 − 1)mod 𝐻𝜁 𝜏0

and similarly 𝑐 ≡ 𝑏𝜁 (𝜁 −1)mod 𝐻𝜁 𝜏1. Hence, 𝜁 (𝜁 −1) (𝑎, 𝑏) = (𝑐, 𝑐) = 𝑐1 = 𝜓(𝑐), so coker 𝜓 is killed
by 𝜁 (𝜁 − 1). Since 𝜁 is invertible in 𝐻𝜁 , coker 𝜓 is already killed by 𝜁 − 1. �

Lemma 4.3.17. 𝐻/𝐻𝜏0 and 𝐻/𝐻𝜏1 are 𝑘 [𝜁]-torsion-free.

Proof. Let 𝐻0 be the k-subalgebra of H generated by 𝑘 [Ω] and 𝜏0. We have

𝐻0 = 𝑘 [Ω] ⊕ 𝑘 [Ω]𝜏0 = 𝑘 [Ω] ⊕ 𝜏0𝑘 [Ω] .

Next, by [OS18] Corollary 3.4, H is free of rank 2 as a 𝐻0 ⊗𝑘 𝑘 [𝜁]-module, with basis {1, 𝜏1}. If
𝐻0 [𝜁] denotes the subalgebra of H generated by 𝐻0 and 𝜁 , then this means that the multiplication map
𝐻0 ⊗𝑘 𝑘 [𝜁] → 𝐻0 [𝜁] is a k-algebra isomorphism and also that H is free of rank 2 as a left 𝐻0 [𝜁]-
module, with basis {1, 𝜏1}:

𝐻 = 𝐻0 [𝜁] ⊕ 𝐻0 [𝜁]𝜏1.

Let 𝐴 := 𝑘 [Ω] [𝜁] ⊂ 𝐻0 [𝜁]; clearly, A is isomorphic as a k-algebra to the polynomial ring in one
variable over 𝑘 [Ω]. Combining the two displayed equations above, we obtain the decomposition

𝐻 = 𝐴 ⊕ 𝐴𝜏0 ⊕ 𝐴𝜏1 ⊕ 𝐴𝜏0𝜏1

of H as a left A-module. Now, 𝜏2
1 = −𝑒1𝜏1 by Lemma 4.1.1, and 𝑒1 is central in H. This implies that

right-multiplication by 𝜏1 sends H into 𝐴𝜏1 ⊕ 𝐴𝜏0𝜏1. Since this A-module is clearly contained in 𝐻𝜏1,
we conclude that 𝐻𝜏1 = 𝐴𝜏1 ⊕ 𝐴𝜏0𝜏1, and therefore

𝐻/𝐻𝜏1 � 𝐴 ⊕ 𝐴𝜏0

as a left A-module. Since A is itself free as a 𝑘 [𝜁]-module, we see that 𝐻/𝐻𝜏1 is free of rank 2(𝑞 − 1)
as a 𝑘 [𝜁]-module. It is in particular 𝑘 [𝜁]-torsion-free.

The argument for 𝐻/𝐻𝜏0 is the same, after switching 𝜏0 with 𝜏1. �

Corollary 4.3.18. The left H-module 𝐵𝜇 is 𝑘 [𝜁]-torsion-free.

Proof. As a left 𝑘 [𝜁]-module, 𝐵𝜇 is isomorphic to 𝑘 [𝜁, 𝜁−1] ⊗𝑘 [𝜁 ]
(
𝐻
𝐻𝜏0
⊕ 𝐻

𝐻𝜏1

)
. The expression in

the brackets is 𝑘 [𝜁]-torsion-free by Lemma 4.3.17, and the result follows easily. �

Theorem 4.3.19. . We have Ann𝑍𝜁 ⊗𝑍𝜁 (𝐵𝜇) = (1 ⊗ 𝜙𝜇) (ker mult𝑍𝜁 ).

Proof. Write 𝑅 = 𝑍𝜁 ⊗ 𝑍𝜁 . Using Proposition 4.3.12, we see that

Ann𝑅 (𝐵𝜇) ⊆ Ann𝑅 ((𝐻𝜁 )𝜙𝜇 ).

Suppose that 𝑟 ∈ 𝑅 kills (𝐻𝜁 )𝜙𝜇 ; then r kills im(𝜓). By Proposition 4.3.16, (𝜁 −1)𝐵𝜇 ⊆ im(𝜓). Hence,
𝑟 · ((𝜁 − 1) ⊗ 1) kills 𝐵𝜇, so 𝜁 − 1 kills 𝑟 · 𝐵𝜇. But 𝐵𝜇 is 𝑘 [𝜁]-torsion-free by Corollary 4.3.18, so
𝑟 · 𝐵𝜇 = 0. This shows that

Ann𝑅 (𝐵𝜇) = Ann𝑅 ((𝐻𝜁 )𝜙𝜇 ).

Now, we apply Lemma 4.3.2 to the (𝑍𝜁 , 𝑍𝜁 )-bimodule 𝐻𝜁 to see that

Ann𝑅 ((𝐻𝜁 )𝜙𝜇 ) = (1 ⊗ 𝜙𝜇−1) (Ann𝑅 (𝐻𝜁 )).

https://doi.org/10.1017/fms.2024.37 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.37


Forum of Mathematics, Sigma 37

Now, 𝑍𝜁 is the centre of 𝐻𝜁 , so Ann𝑅 (𝐻𝜁 ) = Ann𝑅 (𝑍𝜁 ) by Lemma 4.3.3. Since 𝜙𝜇 = 𝜙−1
𝜇 ,

Ann𝑅 (𝐵𝜇) = Ann𝑅 ((𝐻𝜁 )𝜙𝜇 ) = (1 ⊗ 𝜙𝜇) (Ann𝑅 (𝑍𝜁 )).

The result now follows from Lemma 4.3.3 applied with 𝐴 = 𝑍𝜁 . �

Write 𝛿𝜇 (𝑎) := 𝑎 ⊗ 1 − 1 ⊗ 𝜙𝜇 (𝑎) for all 𝑎 ∈ 𝑍𝜁 . The following finite set of ideal generators for
Ann𝑍𝜁 ⊗𝑍𝜁 (𝐵𝜇) will be useful to us later.

Corollary 4.3.20. We have Ann𝑍𝜁 ⊗𝑍𝜁 (𝐵𝜇) = (𝑍𝜁 ⊗ 𝑍𝜁 )𝛿𝜇 (𝜁) +
∑
𝛼∈Ω̂
(𝑍𝜁 ⊗ 𝑍𝜁 )𝛿𝜇 (𝜖𝛼).

Proof. By Corollary 4.2.7, there is a k-algebra isomorphism 𝑍𝜁
�−→ 𝑘 [Ω] [𝑡, 𝑡−1] that sends 𝜖𝛼 to

𝑒𝛼 and 𝜁 to t. Therefore, {𝜁, 𝜁−1} ∪ {𝜖𝛼 : 𝛼 ∈ Ω̂} forms a set of k-algebra generators for 𝑍𝜁 . Write
𝜕 (𝑎) = 𝑎 ⊗ 1 − 1 ⊗ 𝑎 for all 𝑎 ∈ 𝑍𝜁 , and 𝑅 = 𝑍𝜁 ⊗ 𝑍𝜁 ; then by Lemma 4.3.4.b, we have

ker mult𝑍𝜁 = 𝑅𝜕 (𝜁) + 𝑅𝜕 (𝜁−1) +
∑
𝛼∈Ω̂

𝑅𝜕 (𝜖𝛼). (24)

Note that 𝜕 (𝜁−1) = 𝜁−1 ⊗ 1 + 1 ⊗ 𝜁−1 = (𝜁−1 ⊗ 𝜁−1)𝜕 (𝜁), so 𝑅𝜕 (𝜁−1) = 𝑅𝜕 (𝜁). Also, note that
(1 ⊗ 𝜙𝜇)𝜕 = 𝛿𝜇. Therefore, applying 1 ⊗ 𝜙𝜇 to Equation (24) gives

(1 ⊗ 𝜙𝜇)
(
ker mult𝑍𝜁

)
= 𝑅𝛿𝜇 (𝜁) +

∑
𝛼∈Ω̂

𝑅𝛿𝜇 (𝜖𝛼).

The result now follows from Theorem 4.3.19. �

4.4. The bimodule annihilator of Ext∗𝐺 (𝑋, 𝑋)

Our goal will be to compute the ideal

Ann𝑍 ⊗𝑘𝑍𝐸
∗, where 𝐸∗ =

⊕
𝑛≥0

𝐸𝑛, and 𝐸𝑛 = Ext𝑛𝐺 (𝑋, 𝑋).

Recall that 𝑋 = ind𝐺𝐼 (𝑘). For brevity, we will write for each 𝑛 ≥ 0

𝐽𝑛 := Ann𝑍 ⊗𝑘𝑍 (𝐸𝑛).

First, we will use the Poincaré duality isomorphisms from [OS19] to relate 𝐽𝑛 with 𝐽𝑑−𝑛, where d is
the dimension of G as a p-adic Lie group. For this, we need to look at the anti-involution J : 𝐸∗ → 𝐸∗

that was introduced in [OS19], §6: it is an antiautomorphism of the graded algebra 𝐸∗ by [OS19],
Proposition 6.1, and therefore in particular restricts to a k-algebra antiautomorphism of 𝐻 = 𝐸0.

Lemma 4.4.1. J fixes Z pointwise.

Proof. By [OS19] Proposition 6.1, we know that J(𝜏𝑔) = 𝜏𝑔−1 for all 𝑔 ∈ 𝐺, where 𝜏𝑔 denotes the
characteristic function of the double coset 𝐼𝑔𝐼 – see [OS19], §2.2. It follows therefore that J restricts to
the standard anti-involution on the group algebra 𝑘 [Ω] ⊂ 𝐻 that sends the group elements 𝜏𝜔 to 𝜏𝜔−1 ,
for each 𝜔 ∈ Ω. Equation (9) now implies that

J(𝑒𝜆) = 𝑒𝜆−1 for all 𝜆 ∈ Ω̂.

Next, we have 𝑠−1
𝑖 = −𝑠𝑖 for 𝑖 = 0, 1 inside G. Writing 𝜖 = 𝜏𝜔−1 , it follows that

J(𝜏𝑖) = 𝜏𝑖𝜖, 𝑖 = 0, 1.
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With these two pieces of information in hand, we can now compute the effect of J on the algebra
generators 𝑋𝜆 of Z from Definition 4.1.3, for each 𝜆 ∈ Ω̂. When 𝜆 ≠ 1, we have

J(𝑋𝜆) = J(𝑒𝜆𝜏0𝜏1 + 𝑒𝜆−1𝜏1𝜏0)
= J(𝜏1)J(𝜏0)J(𝑒𝜆) + J(𝜏0)J(𝜏1)J(𝑒𝜆−1)
= 𝜏1𝜖 𝜏0𝜖 𝑒𝜆−1 + 𝜏0𝜖 𝜏1𝜖 𝑒𝜆

= 𝜏1𝜏0𝑒𝜆−1 + 𝜏0𝜏1𝑒𝜆

= 𝑒𝜆−1𝜏1𝜏0 + 𝑒𝜆𝜏0𝜏1

= 𝑋𝜆.

We have used here the fact that 𝜖 is a central involution in H, as well as the relations

𝜏𝑖𝑒𝜆 = 𝑒𝜆−1𝜏𝑖 , 𝑖 = 0, 1

from Lemma 4.1.1. Next, recall from Lemma 4.1.2 that 𝜁 = (𝜏0 + 𝑒1) (𝜏1 + 𝑒1) + 𝜏1𝜏0. When 𝜆 = 1, the
calculation goes as follows:

J(𝑋1) = J(𝑒1 𝜁) = J(𝜁)𝑒1
= ((𝜏0𝜖) (𝜏1𝜖) + (𝜏1𝜖 + 𝑒1) (𝜏0𝜖 + 𝑒1))𝑒1
= (𝜏0𝜏1 + 𝜏1𝜏0 + 𝑒1𝜏0𝜖 + 𝜏1𝑒1𝜖 + 𝑒1)𝑒1
= 𝜁𝑒1 = 𝑋1 .

We have used here the fact that 𝑒1𝜖 = 1(𝜖)𝑒1 = 𝑒1 . We have shown that J fixes each 𝑋𝜆. Since these
generate Z as a k-algebra in view of Proposition 4.1.5, J|𝑍 is the identity map. �

For our next result, we need to introduce the k-algebra involution 𝜎 : 𝑍 ⊗𝑘 𝑍 → 𝑍 ⊗𝑘 𝑍 , given by
𝜎(𝑧1 ⊗ 𝑧2) = 𝑧2 ⊗ 𝑧1 for 𝑧1, 𝑧2 ∈ 𝑍 .

Lemma 4.4.2. For each 𝑛 = 0, · · · , 𝑑, we have 𝐽𝑑−𝑛 = 𝜎(𝐽𝑛).

Proof. For a k-vector space V, let 𝑉∨ denote the full k-linear dual 𝑉∨ = Hom𝑘 (𝑉, 𝑘). When V happens
to be an (𝐻, 𝐻)-bimodule, then 𝑉∨ is also an (𝐻, 𝐻)-bimodule. Following [OS19], §7.1, this bimodule
structure is given by the following rule:

(𝑎 · 𝑓 · 𝑏) (𝑣) = 𝑓 (𝑏 𝑣 𝑎) for all 𝑣 ∈ 𝑉, 𝑎, 𝑏 ∈ 𝐻, 𝑓 ∈ 𝑉∨.

We are only interested in (𝑍, 𝑍)-bimodules here. Regarding every (𝑍, 𝑍)-bimodule V as a left 𝐴 :=
𝑍 ⊗𝑘 𝑍-module in the standard way, we can write this action of A on 𝑉∨ as follows:

(𝑥 · 𝑓 ) (𝑣) = 𝑓 (𝜎(𝑥)𝑣) for all 𝑣 ∈ 𝑉, 𝑥 ∈ 𝐴, 𝑓 ∈ 𝑉∨.

It follows immediately that for every (𝑍, 𝑍)-bimodule V we have

𝜎−1 (Ann𝐴𝑉) ⊆ Ann𝐴(𝑉∨). (25)

Now, [OS19] Proposition 7.18 gives us an injective homomorphism of (𝐻, 𝐻)-bimodules

Δ𝑛 : 𝐸𝑛 ↩→ (J(𝐸𝑑−𝑛)J)∨.

Since J fixes Z pointwise by Lemma 4.4.1, we may write this as

Δ𝑛 : 𝐸𝑛 ↩→ (𝐸𝑑−𝑛)∨,
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an injective homomorphism of (𝑍, 𝑍)-bimodules. Using Equation (25), we obtain

𝐽𝑑−𝑛 = Ann𝐴(𝐸𝑑−𝑛) ⊆ 𝜎(Ann𝐴(𝐸𝑑−𝑛)∨) ⊆ 𝜎(Ann𝐴(𝐸𝑛)) = 𝜎(𝐽𝑛).

Replacing n with 𝑑 − 𝑛 gives 𝐽𝑛 ⊆ 𝜎(𝐽𝑑−𝑛), so 𝐽𝑑−𝑛 ⊆ 𝜎(𝐽𝑛) ⊆ 𝜎2 (𝐽𝑑−𝑛) = 𝐽𝑑−𝑛. �

Recall the multiplication map mult𝑍 : 𝑍 ⊗𝑘 𝑍 → 𝑍 from §4.3.1.

Lemma 4.4.3.

a) We have 𝐽0 = ker mult𝑍 .
b) 𝐽0 = 𝜎(𝐽0).

Proof. Since Ext0𝐺 (𝑋, 𝑋) = Hom𝐺 (𝑋, 𝑋) = 𝐻 and since 𝑍 = 𝑍 (𝐻), Lemma 4.3.3 implies that
𝐽0 = ker mult𝑍 . The second statement follows from Lemma 4.3.4.a. �

We assume from now on that 𝔉 = Q𝑝 , 𝑝 ≠ 2, 3 and 𝜋 = 𝑝. This assumption allows us to apply
the results of [OS22] to study 𝐽1. Recall first that by [OS22] Proposition 6.10(1), there is a certain short
exact sequence of (𝐻, 𝐻)-bimodules

0→ ker( 𝑓1) ⊕ ker(𝑔1) → 𝐸1 → 𝐶 → 0. (26)

Here, C is a certain (𝐻, 𝐻)-bimodule with dim𝑘 𝐶 = 4.

Lemma 4.4.4. We have Ann𝑍 ⊗𝑘𝑍 (ker 𝑔1)) = 𝐽0.

Proof. By [OS22] Proposition 6.3, ker(𝑔1) � 𝐹1𝐻 as an (𝐻, 𝐻)-bimodule, where (𝐹𝑛𝐻)𝑛≥0 is the
descending filtration on H defined at [OS22], §2.2.4. Writing 𝐴 = 𝑍 ⊗𝑘 𝑍 , we then have

Ann𝐴(ker(𝑔1)) = Ann𝐴(𝐹1𝐻) ⊇ Ann𝐴(𝐻).

For the reverse inclusion, note that 𝐹1𝐻 = 𝐻𝜏0 +𝐻𝜏1, so 𝜁 (𝜁 − 1) kills 𝐻/𝐹1𝐻 from the left by Lemma
4.3.14. Since H is 𝑘 [𝜁]-torsion-free and since 𝜁 is central in H, left-multiplication by 𝜁 (𝜁 − 1) gives an
injective homomorphism of (𝐻, 𝐻)-bimodules 𝐻 ↩→ 𝐹1𝐻. Hence,

Ann𝐴(ker(𝑔1)) = Ann𝐴(𝐹1𝐻) = Ann𝐴(𝐻) = Ann𝐴(𝐸0) = 𝐽0. �

On p. 38 of [OS22], Ollivier and Schneider consider a certain twist of (𝐻𝜁 ⊕ 𝐻𝜁 ) [𝜅, 𝑧, id2] that they
denote (𝐻𝜁 ⊕ 𝐻𝜁 )±. The left action of H on (𝐻𝜁 ⊕ 𝐻𝜁 ) is unchanged, but the right H-action is twisted
by precomposing the previous right H-action by ι. They show that the left 𝐻𝜁 -submodule 𝐻𝜁 𝜏0 ⊕𝐻𝜁 𝜏1
of this direct sum is stable under this new right H-action, which allows them to pass to the quotient to
form the (𝐻𝜁 , 𝐻)-bimodule (

𝐻𝜁

𝐻𝜁 𝜏0
⊕

𝐻𝜁

𝐻𝜁 𝜏1

)±
=
(𝐻𝜁 ⊕ 𝐻𝜁 )±

(𝐻𝜁 𝜏0 ⊕ 𝐻𝜁 𝜏1)±
.

Then they prove the following theorem – see [OS22] Proposition 3.28 and Theorem 6.8:

Theorem 4.4.5. There is an (𝐻𝜁 , 𝐻)-bimodule isomorphism(
𝐻𝜁

𝐻𝜁 𝜏0
⊕

𝐻𝜁

𝐻𝜁 𝜏1

)±
�−→ ker( 𝑓1).

We are only interested in the (𝑍𝜁 , 𝑍𝜁 )-bimodule structure on ker( 𝑓1). Recall the (𝐻𝜁 , 𝐻)-bimodule
𝐵id2 from Definition 4.3.9.
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Corollary 4.4.6. There is an (𝐻𝜁 , 𝑍𝜁 )-bimodule isomorphism 𝐵id2
�−→ ker( 𝑓1).

Proof. Note that 𝜁 acts invertibly on ker( 𝑓1) from both sides by its definition: Indeed, the left 𝜁-actions
and the right 𝜁-actions are mutually inverse. Therefore, ker( 𝑓1) is in fact a (𝐻𝜁 , 𝐻𝜁 )-bimodule. Since
ι fixes Z by Lemma 4.3.5, precomposing with ι makes no difference to the right action of Z. Now, we
can apply Theorem 4.4.5. �

Theorem 4.4.7. Suppose that 𝔉 = Q𝑝 , 𝑝 ≠ 2, 3 and 𝜋 = 𝑝.

a) We have 𝐽1 = 𝐽0 ∩ Ann𝑍 ⊗𝑘𝑍 (𝐵id2).
b) 𝐽1 = 𝜎(𝐽1).

Proof. a) Again, write 𝐴 = 𝑍 ⊗𝑘 𝑍 . Using Equation (26), we see that

Ann𝐴(𝐸1) ⊆ Ann𝐴(ker( 𝑓1) ⊕ ker(𝑔1)).

For the reverse inclusion, suppose that 𝑥 ∈ Ann𝐴(ker( 𝑓1) ⊕ ker(𝑔1)). Since the (𝐻, 𝐻)-bimodule C
appearing in Equation (26) satisfies dim𝑘 𝐶 < ∞, there is a nonzero 𝑔(𝜁) ∈ 𝑘 [𝜁] such that 𝑔(𝜁)𝐸1 ⊆
ker( 𝑓1) ⊕ ker(𝑔1). Hence, 𝑥 · (𝑔(𝜁)𝐸1) = 0, so 𝑔(𝜁) (𝑥 · 𝐸1) = 0. Since 𝐸1 is 𝑘 [𝜁]-torsion-free by
[OS22] Lemma 5.1, this forces 𝑥 · 𝐸1 = 0. Hence, 𝑥 ∈ Ann𝐴(𝐸1) and

Ann𝐴(𝐸1) = Ann𝐴(ker( 𝑓1) ⊕ ker(𝑔1)) = Ann𝐴(ker( 𝑓1)) ∩ Ann𝐴(ker(𝑔1)).

Using Corollary 4.4.6 and Lemma 4.4.4, we see that

𝐽1 = Ann𝐴(𝐸1) = Ann𝐴(𝐵id2) ∩ 𝐽0. (27)

b) We know that 𝐵id2 is in fact a (𝑍𝜁 , 𝑍𝜁 )-bimodule so that

Ann𝐴(𝐵id2) = 𝐴 ∩ Ann𝑍𝜁 ⊗𝑘𝑍𝜁 (𝐵id2).

In view of formula (27) and Lemma 4.4.3.b, it is enough to show that the obvious extension of 𝜎 to
𝑍𝜁 ⊗ 𝑍𝜁 preserves Ann𝑍𝜁 ⊗𝑘𝑍𝜁 (𝐵id2 ).

Recall from Theorem 4.3.19 that this ideal is generated by {𝛿id2 (𝑎) : 𝑎 ∈ 𝑍𝜁 }, where we define
𝛿id2 (𝑎) := 𝑎 ⊗ 1 − 1 ⊗ 𝜙id2 (𝑎) for each 𝑎 ∈ 𝐴. Since (𝜙id2)2(𝑎) = 𝑎 for all 𝑎 ∈ 𝑍𝜁 , we calculate

𝜎(𝛿id2 (𝑎)) = 𝜎
(
𝑎 ⊗ 1 − 1 ⊗ 𝜙id2 (𝑎)

)
= −(𝜙id2 (𝑎) ⊗ 1 − 1 ⊗ 𝑎) = −𝛿id2 (𝜙id2 (𝑎)).

Therefore, 𝜎 preserves Ann𝑍𝜁 ⊗𝑘𝑍𝜁 (𝐵id2) as required. �

Putting everything together, we obtain

Corollary 4.4.8. Suppose that 𝔉 = Q𝑝 , 𝑝 ≠ 2, 3 and 𝜋 = 𝑝. Then

Ann𝑍 ⊗𝑘𝑍 (𝐸∗) = ker mult𝑍 ∩ Ann𝑍 ⊗𝑘𝑍 (𝐵id2).

Proof. Here, 𝑑 = 3, so Ann𝑍 ⊗𝑘𝑍 (𝐸∗) = 𝐽0 ∩ 𝐽1 ∩ 𝐽2 ∩ 𝐽3. However, 𝐽2 = 𝜎(𝐽1) and 𝐽3 = 𝜎(𝐽0) by
Lemma 4.4.2. Using Lemma 4.4.3.b and Theorem 4.4.7.b, we obtain

Ann𝑍 ⊗𝑘𝑍 (𝐸∗) = 𝐽0 ∩ 𝐽1.

Now, use Theorem 4.4.7.a and Lemma 4.4.3.a to conclude. �

https://doi.org/10.1017/fms.2024.37 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.37


Forum of Mathematics, Sigma 41

4.5. The computation of the quotient space

Our goal is to compute the quotient locally ringed space Ξ/R, where

R := 𝑉 (Ann𝑍 ⊗𝑘𝑍 (𝐸∗)) ⊂ Ξ × Ξ.

4.5.1. Passing to the normalisation
Corollary 4.4.8 tells us that

R = Rid2 , where we define R𝜇 := 𝑉
(
ker mult𝑍 ∩ Ann𝑍 ⊗𝑘𝑍 (𝐵𝜇)

)
for any 𝜇 ∈ Ω̂.

Recall from Definition 4.2.3 that 𝜃 : Ξ′ → Ξ is the normalisation of Ξ, where 𝜃 = Spec(𝜑) and
𝜑 : 𝑍 → 𝑍 ′ is the map sending 𝑋𝛼 ∈ 𝑍 to 𝑒𝛼𝑡 ∈ 𝑍 ′ = 𝑘 [Ω] [𝑡]. Because the localisation map 𝑍 → 𝑍𝜁
factors through 𝑍 ′, we see that the (𝑍𝜁 , 𝑍𝜁 )-bimodule 𝐵𝜇 from Definition 4.3.9 can be viewed as a
(𝑍 ′, 𝑍 ′)-bimodule via restriction along 𝑍 ′ ↩→ 𝑍𝜁 .

Definition 4.5.1. We define R′𝜇 := 𝑉
(
ker mult𝑍 ′ ∩ Ann𝑍 ′ ⊗𝑘𝑍 ′ (𝐵𝜇)

)
⊂ Ξ′ × Ξ′.

Lemma 4.5.2. Write 𝐴′ = 𝑍 ′ ⊗𝑘 𝑍 ′. Then we have

ker mult𝑍 ′ = 𝐴′(𝑡 ⊗ 1 − 1 ⊗ 𝑡) +
∑
𝛼∈Ω̂

𝐴′(𝑒𝛼 ⊗ 1 − 1 ⊗ 𝑒𝛼).

Proof. The k-algebra 𝑍 ′ = 𝑘 [Ω] [𝑡] is generated by {𝑡} ∪ {𝑒𝛼 : 𝛼 ∈ Ω̂}. Use Lemma 4.3.4.b. �

It turns out that Ann𝑍 ′ ⊗𝑘𝑍 ′ (𝐵𝜇) is slightly easier to compute than Ann𝑍 ⊗𝑘𝑍 (𝐵𝜇).

Proposition 4.5.3. Write 𝐴′ = 𝑍 ′ ⊗𝑘 𝑍 ′. Then for any 𝜇 ∈ Ω̂, we have

Ann𝐴′ (𝐵𝜇) = 𝐴′(𝑡 ⊗ 𝑡 − 1 ⊗ 1) +
∑
𝛼∈Ω̂

𝐴′(𝑒𝛼 ⊗ 1 − 1 ⊗ 𝑒𝜇/𝛼).

Proof. By Corollary 4.2.7, there is a k-algebra isomorphism 𝑍 ′𝑡 � 𝑍𝜁 . Under this isomorphism, 𝑡 ∈ 𝑍 ′

maps to 𝜁 ∈ 𝑍𝜁 and 𝑒𝛼 ∈ 𝑍 ′ maps to 𝜖𝛼 = 𝑋𝛼/𝜁 ∈ 𝑍𝜁 , for each 𝛼 ∈ Ω̂. This isomorphism also induces
k-algebra isomorphisms 𝐴′𝑡⊗𝑡 � (𝑍 ′𝑡 ) ⊗𝑘 (𝑍 ′𝑡 ) � (𝑍𝜁 ) ⊗𝑘 (𝑍𝜁 ) � 𝑅. Regarding 𝐵𝜇 as an 𝐴′𝑡⊗𝑡 -module
via this isomorphism, we can apply Corollary 4.3.20 to obtain

Ann𝐴′𝑡⊗𝑡 (𝐵𝜇) = 𝐴′𝑡⊗𝑡 (𝑡 ⊗ 1 − 1 ⊗ 𝑡−1) +
∑
𝛼∈Ω̂

𝐴′𝑡⊗𝑡 (𝑒𝛼 ⊗ 1 − 1 ⊗ 𝑒𝜇/𝛼).

Let I denote the ideal of 𝐴′ appearing on the right-hand side of the statement. Then 𝐴′/𝐼 is isomorphic
to 𝑆[𝑡, 𝑡−1] as a k-algebra, where 𝑆 := 𝑘 [Ω] ⊗2/

〈
𝑒𝛼 ⊗ 1 − 1 ⊗ 𝑒𝜇/𝛼 : 𝛼 ∈ Ω̂

〉
. This ring is t-torsion-free.

Therefore, 𝐴′/𝐼 is 𝑡 ⊗ 𝑡-torsion-free, so 𝐴′ ∩ (𝐼 · 𝐴′𝑡⊗𝑡 ) = 𝐼. Hence, Ann𝐴′ (𝐵𝜇) = 𝐴′ ∩ Ann𝐴′𝑡⊗𝑡 (𝐵𝜇) =
𝐴′ ∩ (𝐼 · 𝐴′𝑡⊗𝑡 ) = 𝐼 . �

Recall the coequaliser diagram Ξsing
𝑎 ��
𝑏

�� Ξ′
𝜃 �� Ξ from Proposition 4.2.5.

Proposition 4.5.4. Let 𝑞′ : Ξ′ → Ξ′/R′𝜇 be a coequaliser in LRS of R′𝜇
pr′1 ��
pr′2

�� Ξ′ , and let 𝑠 :

Ξ′/R′𝜇 → (Ξ′/R′𝜇)/Ξsing be a coequaliser in LRS of Ξsing
𝑞′𝑎 ��
𝑞′𝑏

�� Ξ′/R′𝜇 . Then

Ξ/R𝜇 � (Ξ′/R′𝜇)/Ξsing.
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Proof. The situation is summarised in the following diagram:

Ξsing

𝑏

��

𝑎

��

𝑞′𝑏

		�
��

��
��

��
��

��
��

��

𝑞′𝑎

		�
��

��
��

��
��

��
��

��

R′𝜇
pr′1 ��
pr′2

�� Ξ′
𝑞′

��

𝜃

��

Ξ′/R′𝜇
𝑠

����
���

���
���

R𝜇

pr1 ��
pr2

�� Ξ 𝑞
�� Ξ/R𝜇 (Ξ′/R′𝜇)/Ξsing.

(28)

The result now follows from Lemma A.2, provided we can find an epimorphism 𝜃 ′ : R′𝜇 → R𝜇 in LRS
making the diagram commute, in the sense that pr𝑖𝜃 ′ = 𝜃pr′𝑖 holds for 𝑖 = 1, 2.

Write 𝐴 = 𝑍 ⊗𝑘 𝑍 and 𝐴′ = 𝑍 ′ ⊗𝑘 𝑍 ′; then by definition, we have

O(R𝜇) =
𝐴

ker mult𝑍 ∩ Ann𝐴(𝐵𝜇)
and O(R′𝜇) =

𝐴′

ker mult𝑍 ′ ∩ Ann𝐴′ (𝐵𝜇)
.

The map 𝜑 ⊗ 𝜑 : 𝐴→ 𝐴′ is an injective k-algebra homomorphism; furthermore we have

ker mult𝑍 = (𝜑 ⊗ 𝜑)−1(ker mult𝑍 ′ ) and Ann𝐴(𝐵𝜇) = (𝜑 ⊗ 𝜑)−1(Ann𝐴′ (𝐵𝜇)).

Therefore, 𝜑 ⊗ 𝜑 descends to a natural injective k-algebra homomorphism

𝜑 ⊗ 𝜑 : O(R𝜇) ↩→ O(R′𝜇). (29)

We define 𝜃 ′ := Spec(𝜑 ⊗ 𝜑) : R′𝜇 → R𝜇 to be the corresponding morphism of affine schemes. The
following diagram of commutative rings

O(R′𝜇) 𝑍 ′

(pr′2)
♯

��
(pr′1)

♯

��

O(R𝜇)

𝜑⊗𝜑

��

𝑍
pr♯2

��
pr♯1��

𝜑

��

is readily checked to be commutative: For example, we have

(pr′1)
♯ (𝜑(𝑎)) = 𝜑(𝑎) ⊗ 1 = 𝜑 ⊗ 𝜑(𝑎 ⊗ 1) = 𝜑 ⊗ 𝜑(pr♯1(𝑎)) for any 𝑎 ∈ 𝑍.

Because the schemes Ξ,Ξ′,R𝜇,R′𝜇 are all affine, it follows that pr𝑖𝜃 ′ = 𝜃pr′𝑖 holds for 𝑖 = 1, 2. It
remains to show that 𝜃 ′ is an epimorphism in LRS, and this follows from Lemma 4.5.5 below, once we
check its two conditions.

a) We note that 𝑍 ′ = 𝑘 [Ω] [𝑡] is a finitely generated Z-module via 𝜑 : 𝑍 → 𝑍 ′: indeed, Ω ⊂ 𝑍 ′ is a
finite generating set as a 𝑘 [𝑡]-module, and 𝑘 [𝑡] = 𝑘 [𝜑(𝜁)] ⊆ 𝜑(𝑍). Hence, 𝐴′ is a finitely generated A-
module, so O(R′𝜇) is a finitely generated O(R𝜇)-module. Hence, |𝜃 ′ | is surjective by [AM] Proposition
5.1 and Theorem 5.10.

b) The map (𝜃 ′)♯ (R𝜇) = 𝜑 ⊗ 𝜑 is injective, as we saw above in Equation (29). �
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Lemma 4.5.5. 4 Let 𝑓 : 𝑌 → 𝑋 be a morphism of affine schemes. Suppose that

a) | 𝑓 | : |𝑌 | → |𝑋 | is surjective,
b) 𝑓 ♯ (𝑋) : O(𝑋) → O(𝑌 ) is injective.

Then 𝑓 : 𝑌 → 𝑋 is an epimorphism in LRS.

Proof. Suppose that 𝑢 𝑓 = 𝑣 𝑓 for some morphisms 𝑢, 𝑣 : 𝑋 → 𝑍 in LRS. Then |𝑢 | | 𝑓 | = |𝑣 | | 𝑓 | implies
that |𝑢 | = |𝑣 | because | 𝑓 | is surjective. Hence, it remains to show that 𝑢♯ = 𝑣♯. Now, |𝑢 |∗ ( 𝑓 ♯) ◦ 𝑢♯ =
(𝑢 𝑓 )♯ = (𝑣 𝑓 )♯ = |𝑣 |∗ ( 𝑓 ♯) ◦ 𝑣♯, so it is enough to show that 𝑓 ♯ : O𝑋 → 𝑓∗O𝑌 is injective. This
can be checked on basic open subsets 𝐷 (𝑔) of X, 𝑔 ∈ O(𝑋). But since 𝑋,𝑌 are affine, the map
𝑓 ♯ (𝐷 (𝑔)) : O(𝐷 (𝑔)) → O( 𝑓 −1𝐷 (𝑔)) is the localisation of the injective map 𝑓 ♯ (𝑋) : O(𝑋) → O(𝑌 )
at g and is therefore also injective. �

4.5.2. Calculating Ξ′/R′𝜇
For each 𝛼 ∈ Ω̂, we let Ξ𝛼 := 𝑉 (1 − 𝑒𝛼) ⊂ Ξ′ be the closed subscheme cut out by the idempotent
1 − 𝑒𝛼 ∈ O(Ξ′) = 𝑘 [Ω] [𝑡]. Let 𝑡𝛼 be the image of 𝑡 ∈ O(Ξ′) in O(Ξ′𝛼); then O(Ξ′𝛼) = 𝑘 [𝑡𝛼] and
Ξ′ =

∐
𝛼∈Ω̂ Ξ′𝛼. It follows that

Ξ′ × Ξ′ =
∐
𝛼,𝛽∈Ω̂

Ξ′𝛼 × Ξ′𝛽 .

We write R′𝜇,𝛼,𝛽 := R′𝜇 ∩ (Ξ′𝛼 × Ξ′𝛽) for all 𝛼, 𝛽 ∈ Ω̂ so that

R′𝜇 =
∐
𝛼,𝛽∈Ω̂

R′𝜇,𝛼,𝛽 .

For each 𝛼, 𝛽 ∈ Ω̂, will identify O(Ξ′𝛼 ×Ξ′𝛽) = 𝑘 [𝑡𝛼] ⊗𝑘 𝑘 [𝑡𝛽] with the polynomial algebra 𝑘 [𝑥, 𝑦], via
𝑥 ↦→ 𝑡𝛼 ⊗ 1 and 𝑦 ↦→ 1 ⊗ 𝑡𝛽 . With this notation in hand, we can now calculate the defining equations for
each R′𝜇,𝛼,𝛽 .

Proposition 4.5.6. For every 𝜇, 𝛼, 𝛽 ∈ Ω̂, we have

R′𝜇,𝛼,𝛽 = 𝑉 ((𝑥 − 𝑦) 𝛿𝛼,𝛽 (𝑥𝑦 − 1) 𝛿𝛼,𝜇/𝛽 ).

Proof. Consider the canonical projection 𝜋𝛼,𝛽 : 𝐴′ = O(Ξ′ ×Ξ′) � O(Ξ′𝛼×Ξ′𝛽) = 𝑘 [𝑥, 𝑦] with kernel
ker 𝜋𝛼,𝛽 = 〈(1 − 𝑒𝛼) ⊗ 1, 1 ⊗ (1 − 𝑒𝛽)〉. Then for all 𝛾, 𝛿 ∈ Ω̂, we have

𝜋𝛼,𝛽 (𝑒𝛾 ⊗ 𝑒𝛿) = 𝛿𝛼,𝛾𝛿𝛽, 𝛿 ,
𝜋𝛼,𝛽 (𝑒𝛾 ⊗ 1) = 𝛿𝛼,𝛾 ,
𝜋𝛼,𝛽 (1 ⊗ 𝑒𝛿) = 𝛿𝛽, 𝛿 .

(30)

Using Lemma 4.5.2 together with Equations (30), we have

𝜋𝛼,𝛽 (ker mult𝑍 ′ ) = 〈𝑥 − 𝑦〉 +
∑
𝜈∈Ω̂

〈𝜋𝛼,𝛽 (𝑒𝜈 ⊗ 1) − 𝜋𝛼,𝛽 (1 ⊗ 𝑒𝜈)〉

= 〈𝑥 − 𝑦〉 +
∑
𝜈∈Ω̂

〈𝛿𝛼,𝜈 − 𝛿𝛽,𝜈〉

= 〈(𝑥 − 𝑦) 𝛿𝛼,𝛽 〉.

4Because | · | : LRS→ Top is a left adjoint, it must preserve epimorphisms, so condition a) is necessary for Lemma 4.5.5 to
hold. The discussion [KStm] gives an explicit example where Lemma 4.5.5 fails if only condition b) is assumed to hold.
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Similarly, using Proposition 4.5.3 together with Equations (30), we have

𝜋𝛼,𝛽 (Ann𝐴′ (𝐵𝜇)) = 〈𝑥𝑦 − 1〉 +
∑
𝜈∈Ω̂

〈𝜋𝛼,𝛽 (𝑒𝜈 ⊗ 1) − 𝜋𝛼,𝛽 (1 ⊗ 𝑒𝜇/𝜈)〉

= 〈𝑥𝑦 − 1〉 +
∑
𝜈∈Ω̂

〈𝛿𝛼,𝜈 − 𝛿𝛽,𝜇/𝜈〉

= 〈(𝑥𝑦 − 1) 𝛿𝛼,𝜇/𝛽 〉.

By the elementary Lemma 4.5.7 below, we then have

𝜋𝛼,𝛽 (ker mult𝑍 ′ ∩ Ann𝐴′ (𝐵𝜇)) = 𝜋𝛼,𝛽 (ker mult𝑍 ′ ) ∩ 𝜋𝛼,𝛽 (Ann𝐴′ (𝐵𝜇))
= 〈(𝑥 − 𝑦) 𝛿𝛼,𝛽 〉 ∩ 〈(𝑥𝑦 − 1) 𝛿𝛼,𝜇/𝛽 〉
= 〈(𝑥 − 𝑦) 𝛿𝛼,𝛽 (𝑥𝑦 − 1) 𝛿𝛼,𝜇/𝛽 〉.

Recalling that R′𝜇,𝛼,𝛽 = R′𝜇 ∩ (Ξ′𝛼 × Ξ′𝛽) and using Definition 4.5.1, we have

R′𝜇,𝛼,𝛽 = 𝑉 (𝜋𝛼,𝛽 (ker mult𝑍 ′ ∩ Ann𝐴′ (𝐵𝜇))) ⊂ Ξ′𝛼 × Ξ′𝛽 .

The result follows. �

Lemma 4.5.7. Let A be a ring, let 𝑒, 𝑓 ∈ 𝐴 be two central idempotents and consider the canonical
projection 𝜋 : 𝐴 � 𝐴/〈1−𝑒, 1− 𝑓 〉. Then for every pair of ideals 𝐼, 𝐽 of A we have 𝜋(𝐼∩𝐽) = 𝜋(𝐼)∩𝜋(𝐽).

Proof. Let 𝑎 ∈ 𝜋(𝐼) ∩ 𝜋(𝐽). Then we can find 𝑥 ∈ 𝐼 and 𝑦 ∈ 𝐽 such that 𝑎 = 𝜋(𝑥) = 𝜋(𝑦). Now,
𝑥 = (1 − 𝑒 + 𝑒) (1 − 𝑓 + 𝑓 )𝑥 implies that 𝜋(𝑥) = 𝜋(𝑒 𝑓 𝑥) and similarly 𝜋(𝑦) = 𝜋(𝑒 𝑓 𝑦). Hence,
𝜋(𝑒 𝑓 𝑥) = 𝜋(𝑥) = 𝜋(𝑦) = 𝜋(𝑒 𝑓 𝑦), so 𝑒 𝑓 𝑥 − 𝑒 𝑓 𝑦 ∈ ker 𝜋. But 𝑒 𝑓 (1 − 𝑒) = 𝑒 𝑓 (1 − 𝑓 ) = 0, so
𝑒 𝑓 ker 𝜋 = 0. Hence, 𝑒 𝑓 (𝑒 𝑓 𝑥 − 𝑒 𝑓 𝑦) = 0, so 𝑒 𝑓 𝑥 = 𝑒2 𝑓 2𝑥 = 𝑒2 𝑓 2𝑦 = 𝑒 𝑓 𝑦. Since 𝑒 𝑓 𝑥 ∈ 𝐼 and 𝑒 𝑓 𝑦 ∈ 𝐽,
we see that 𝑒 𝑓 𝑥 = 𝑒 𝑓 𝑦 ∈ 𝐼 ∩ 𝐽. Hence, 𝑎 = 𝜋(𝑥) = 𝜋(𝑒 𝑓 𝑥) ∈ 𝜋(𝐼 ∩ 𝐽), so 𝜋(𝐼) ∩ 𝜋(𝐽) ⊆ 𝜋(𝐼 ∩ 𝐽). The
reverse inclusion is clear. �

We introduce an equivalence relation ∼
𝜇

on Ω̂ by setting 𝛼 ∼
𝜇
𝛽 if and only if 𝛽 ∈ {𝛼, 𝜇/𝛼}. For an

equivalence class 𝛾 ∈ Ω̂/∼
𝜇

, we write

Ξ′𝛾 :=
∐
𝛼∈𝛾

Ξ′𝛼 and R′𝜇,𝛾 :=
∐
𝛼,𝛽∈𝛾

R′𝜇,𝛼,𝛽 . (31)

We use the projection maps prΞ
′
𝛾

1 , prΞ
′
𝛾

2 : Ξ′𝛾 × Ξ′𝛾 → Ξ′𝛾 to define the map

𝑓
𝛾
𝑖 := prΞ

′
𝛾

𝑖 |R′𝜇,𝛾 : R′𝜇,𝛾 → Ξ′𝛾 for 𝑖 = 1, 2.

Then for each 𝛾 ∈ Ω̂/∼
𝜇

, we may form the coequaliser diagram in LRS

R′𝜇,𝛾
𝑓
𝛾

1 ��

𝑓
𝛾

2

�� Ξ′𝛾 �� Ξ′𝛾/R′𝜇,𝛾 . (32)

Lemma 4.5.8. We have Ξ′ =
∐

𝛾∈Ω̂/∼
𝜇

Ξ′𝛾 and R′𝜇 =
∐

𝛾∈Ω̂/∼
𝜇

R′𝜇,𝛾 .
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Proof. Only the second statement needs proof. For this, we have

R′𝜇 =
∐
𝛼,𝛽∈Ω̂

R′𝜇,𝛼,𝛽 =
∐
𝛾∈Ω̂/∼

𝜇

∐
𝛼∈𝛾

∐
𝛽∈Ω̂

R′𝜇,𝛼,𝛽 .

But by Proposition 4.5.6, we have R′𝜇,𝛼,𝛽 = ∅ if 𝛽 ∉ {𝛼, 𝜇/𝛼}. Hence, R′𝜇 =
∐

𝛾∈Ω̂/∼
𝜇

R′𝜇,𝛾 . �

Corollary 4.5.9. We have Ξ′/R′𝜇 �
∐

𝛾∈Ω̂/∼
𝜇

Ξ′𝛾/R′𝜇,𝛾 in LRS.

Proof. We have Ξ′ =
∐

𝛾∈Ω̂/∼
𝜇

Ξ′𝛾 and R′𝜇 =
∐

𝛾∈Ω̂/∼
𝜇

R′𝜇,𝛾 by Lemma 4.5.8. Note also that prΞ′𝑖 =
∐

𝛾∈Ω̂/∼
𝜇

𝑓
𝛾
𝑖

for 𝑖 = 1, 2. Now, the result follows from Lemma A.3. �

Recall [Sta] Section 01JA that a gluing datum in LRS consists of the following data:

◦ an index set I,
◦ a locally ringed space 𝑋𝑖 for each 𝑖 ∈ 𝐼,
◦ an open subspace 𝜄𝑖, 𝑗 : 𝑈𝑖, 𝑗 ↩→ 𝑋𝑖 for each 𝑖, 𝑗 ∈ 𝐼,
◦ an isomorphism 𝜑𝑖, 𝑗 : 𝑈𝑖, 𝑗

�−→ 𝑈 𝑗 ,𝑖 in LRS for all 𝑖, 𝑗 ∈ 𝐼

such that

1. 𝑈𝑖,𝑖 = 𝑋𝑖 for all 𝑖 ∈ 𝐼, and
2. 𝜑 𝑗 ,𝑘 ◦ 𝜑𝑖, 𝑗 |𝑈𝑖, 𝑗∩𝑈𝑖,𝑘 = 𝜑𝑖,𝑘 |𝑈𝑖, 𝑗∩𝑈𝑖,𝑘 holds for all 𝑖, 𝑗 , 𝑘 ∈ 𝐼.

Recall from [DG] Proposition I.1.1.6 that LRS admits all colimits.

Definition 4.5.10. Let
(
𝐼, {𝑋𝑖}𝑖∈𝐼 , {𝜄𝑖, 𝑗 }𝑖, 𝑗∈𝐼 , {𝜑𝑖, 𝑗 }𝑖, 𝑗∈𝐼

)
be a gluing datum in LRS. Form the coproduct

𝑈 :=
∐
𝑖∈𝐼

𝑋𝑖 and let ℓ𝑖 : 𝑋𝑖 ↩→ 𝑈 be the canonical inclusions for each 𝑖 ∈ 𝐼. Define

∐
𝑖, 𝑗
𝑈𝑖, 𝑗

𝑢 ��
𝑣

��
∐
𝑖∈𝐼

𝑋𝑖 = 𝑈 (33)

by setting 𝑢 = (𝑢𝑖, 𝑗 )𝑖, 𝑗∈𝐼 and 𝑣 = (𝑣𝑖, 𝑗 )𝑖, 𝑗∈𝐼 , where

𝑢𝑖, 𝑗 = ℓ𝑖 ◦ 𝜄𝑖, 𝑗 and 𝑣𝑖, 𝑗 = ℓ 𝑗 ◦ 𝜄 𝑗 ,𝑖 ◦ 𝜑𝑖, 𝑗 for all 𝑖, 𝑗 ∈ 𝐼 . (34)

If 𝑞 : 𝑈 → 𝑋 is a coequaliser of diagram (33) in LRS, then we call X the gluing of the 𝑋𝑖’s with respect
to the gluing datum.

Remark 4.5.11. It is shown in [Sta], Lemma 01JA that the glued locally ringed space X admits an open
covering {𝑈𝑖 : 𝑖 ∈ 𝐼} such that𝑈𝑖 � 𝑋𝑖 for all 𝑖 ∈ 𝐼. It follows immediately that X is a scheme whenever
each 𝑈𝑖 is a scheme.

Theorem 4.5.12. Suppose that 𝛾 = {𝛼, 𝛽}, where 𝛽 = 𝜇/𝛼 and 𝛼 ≠ 𝛽. Then Ξ′𝛾/R′𝜇,𝛾 is isomorphic to
the projective line P1.

Proof. We will first recall the well-known gluing datum that is used in the construction of the projective
line P1: See, for example, [Sta], Example 01JE. The indexing set is 𝐼 := {𝛼, 𝛽}. The spaces to be glued
are 𝑋𝛼 := Ξ′𝛼 = Spec𝑘 [𝑡𝛼] and 𝑋𝛽 := Ξ′𝛽 = Spec𝑘 [𝑡𝛽]. The 𝑈𝑖, 𝑗 ’s are as follows:

𝑈𝛼,𝛼 := Ξ′𝛼, 𝑈𝛽,𝛽 = Ξ′𝛽 , 𝑈𝛼,𝛽 = Spec𝑘 [𝑡𝛼, 𝑡−1
𝛼 ] and 𝑈𝛽,𝛼 = Spec𝑘 [𝑡𝛽 , 𝑡−1

𝛽 ] .
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The inclusions 𝜄𝛼,𝛽 are made clear by the notation, and the gluing isomorphisms 𝜑𝑖, 𝑗 are as follows:
𝜑𝛼,𝛼 = id𝑈𝛼 , 𝜑𝛽,𝛽 = id𝑈𝛽 , 𝜑𝛽,𝛼 = 𝜑−1

𝛼,𝛽 , and 𝜑𝛼,𝛽 : 𝑈𝛼,𝛽
�−→ 𝑈𝛽,𝛼 is determined by the corresponding

map 𝜑♯𝛼,𝛽 on coordinate rings, which is given by 𝜑♯𝛼,𝛽 (𝑡𝛽) = 𝑡
−1
𝛼 . Hence, we have the coequaliser diagram

𝑈𝛾 :=
∐

𝑖, 𝑗∈{𝛼,𝛽 }
𝑈𝑖, 𝑗

𝑢 ��
𝑣

�� Ξ′𝛼
∐

Ξ′𝛽
𝑞 �� P1 .

Recall that Ξ′𝛾/R′𝜇,𝛾 is defined by the coequaliser diagram (32). We see that to show that Ξ′𝛾/R′𝜇,𝛾 � P1

as locally ringed spaces it will be enough find an isomorphism of schemes

𝜏 : R′𝜇,𝛾
�−→ 𝑈𝛾

such that the following two diagrams of affine schemes are commutative:

R′𝜇,𝛾 ��

�𝜏

��

Ξ′𝛾 × Ξ′𝛾
pr1

��
𝑈𝛾 𝑢

�� Ξ′𝛾

and R′𝜇,𝛾 ��

�𝜏

��

Ξ′𝛾 × Ξ′𝛾
pr2

��
𝑈𝛾 𝑣

�� Ξ′𝛾 .

Here, both of the top horizontal arrows are the closed embedding of R′𝜇,𝛾 into Ξ′𝛾 × Ξ′𝛾 . Now, the
relation R′𝜇,𝛾 also decomposes as a disjoint union

R′𝜇,𝛾 =
∐

𝑖, 𝑗∈{𝛼,𝛽 }
R′𝜇,𝑖, 𝑗 ⊂ Ξ′𝛾 × Ξ′𝛾 =

∐
𝑖, 𝑗∈{𝛼,𝛽 }

Ξ′𝑖 × Ξ′𝑗 ,

so it will be enough to work componentwise, and for each 𝑖, 𝑗 ∈ 𝛾 to find an isomorphism

𝜏𝑖 𝑗 : R′𝜇,𝑖, 𝑗
�−→ 𝑈𝑖, 𝑗

such that the following two diagrams of affine schemes are commutative:

R′𝜇,𝑖, 𝑗 ��

�𝜏𝑖, 𝑗

��

Ξ′𝑖 × Ξ′𝑗
pr1

��
𝑈𝑖, 𝑗 𝑢𝑖, 𝑗

�� Ξ′𝑖

and R′𝜇,𝑖, 𝑗 ��

�𝜏𝑖, 𝑗

��

Ξ′𝑖 × Ξ′𝑗
pr2

��
𝑈𝑖, 𝑗 𝑣𝑖, 𝑗

�� Ξ′𝑗 .

(35)

Because 𝛼 ≠ 𝛽, the connected components R′𝜇,𝑖, 𝑗 of R′𝜇,𝛾 are given by Proposition 4.5.6 as follows:

R′𝜇,𝛼,𝛼 = 𝑉 (〈𝑡𝛼 ⊗ 1 − 1 ⊗ 𝑡𝛼〉),
R′𝜇,𝛽,𝛽 = 𝑉 (〈𝑡𝛽 ⊗ 1 − 1 ⊗ 𝑡𝛽〉),
R′𝜇,𝛼,𝛽 = 𝑉 (〈𝑡𝛼 ⊗ 𝑡𝛽 − 1 ⊗ 1〉), and
R′𝜇,𝛽,𝛼 = 𝑉 (〈𝑡𝛽 ⊗ 𝑡𝛼 − 1 ⊗ 1〉).

(36)

Suppose first that 𝑗 = 𝑖. In this case 𝑢𝑖,𝑖 = idΞ′𝑖 , so we define 𝜏𝑖,𝑖 := pr1 |R′𝜇,𝑖, 𝑗 ; then the first diagram
in Equation (35) commutes by definition. For the second diagram, note that 𝑣𝑖,𝑖 = 𝑢𝑖,𝑖 ◦𝜑𝑖,𝑖 is also equal
to idΞ′𝑖 , so 𝑣𝑖,𝑖 ◦ 𝜏𝑖,𝑖 = pr1 |R′𝜇,𝑖,𝑖 = pr2 |R′𝜇,𝑖,𝑖 in view of the first two equations in Equation (36). Hence,
the second diagram in Equation (35) commutes as well.
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Suppose now that 𝑗 ≠ 𝑖. Looking at the last two equations in Equation (36), we see that the element
pr♯1(𝑡𝑖) |R′𝜇,𝑖, 𝑗 = 𝑡𝑖 ⊗ 1 is a unit in O(R′𝜇,𝑖, 𝑗 ). Therefore, the k-algebra homomorphism (pr1 |R′𝑖, 𝑗 )

♯ :
O(Ξ′𝑖) → O(R′𝜇,𝑖, 𝑗 ) extends to the localisation O(𝑈𝑖, 𝑗 ) of O(Ξ′𝑖), which means that pr1 |R′𝜇,𝑖, 𝑗 factors
through the Zariski open subset𝑈𝑖, 𝑗 of Ξ′𝑖 . In other words, there exists a morphism 𝜏𝑖, 𝑗 : R′𝜇,𝑖, 𝑗 → 𝑈𝑖, 𝑗 ,
making the first diagram in Equation (35) commutative. Looking at the last two equations in Equation
(36) again, we see that the corresponding map on coordinate rings

𝜏♯𝑖, 𝑗 : 𝑘 [𝑡𝑖 , 𝑡−1
𝑖 ] →

𝑘 [𝑡𝑖] ⊗ 𝑘 [𝑡 𝑗 ]
〈𝑡𝑖 ⊗ 𝑡 𝑗 − 1 ⊗ 1〉

sends 𝑡𝑖 to 𝑡𝑖 ⊗ 1 and 𝑡−1
𝑖 to 𝑡𝑖 ⊗ 1

−1
= 1 ⊗ 𝑡 𝑗 and that it is an isomorphism. Therefore, 𝜏𝑖, 𝑗 is also an

isomorphism. It remains to check that the second diagram in Equation (35) is commutative. Since all
schemes involved are affine, it will be enough to check this on coordinate rings.

Suppose that (𝑖, 𝑗) = (𝛼, 𝛽). Since 𝑣𝛼,𝛽 = 𝑢𝛽,𝛼 ◦ 𝜑𝛼,𝛽 by Equation (34), this diagram is

𝑘 [𝑡𝛼 ] ⊗𝑘 [𝑡𝛽 ]
〈𝑡𝛼⊗𝑡𝛽−1⊗1〉 𝑘 [𝑡𝛼] ⊗ 𝑘 [𝑡𝛽]��

𝑘 [𝑡𝛼, 𝑡−1
𝛼 ]

𝜏
♯
𝛼,𝛽

��

𝑘 [𝑡𝛽 , 𝑡−1
𝛽 ]

𝜑
♯
𝛼,𝛽

�� 𝑘 [𝑡𝛽]��

pr♯2

��

and it is commutative because 𝜏♯𝛼,𝛽 (𝜑
♯
𝛼,𝛽 (𝑡𝛽)) = 𝜏

♯
𝛼,𝛽 (𝑡

−1
𝛼 ) = 1 ⊗ 𝑡𝛽 = pr♯2(𝑡𝛽).

Similarly, when (𝑖, 𝑗) = (𝛽, 𝛼) because 𝑣𝛽,𝛼 = 𝑢𝛼,𝛽 ◦ 𝜑𝛽,𝛼 by Equation (34), this diagram is

𝑘 [𝑡𝛽 ] ⊗𝑘 [𝑡𝛼 ]
〈𝑡𝛽⊗𝑡𝛼−1⊗1〉 𝑘 [𝑡𝛽] ⊗ 𝑘 [𝑡𝛼]��

𝑘 [𝑡𝛽 , 𝑡−1
𝛽 ]

𝜏
♯
𝛽,𝛼

��

𝑘 [𝑡𝛼, 𝑡−1
𝛼 ]

𝜑
♯
𝛽,𝛼

�� 𝑘 [𝑡𝛼]��

pr♯2

��

and it is commutative because 𝜏♯𝛽,𝛼 (𝜑
♯
𝛽,𝛼 (𝑡𝛼)) = 𝜏

♯
𝛽,𝛼 (𝑡

−1
𝛽 ) = 1 ⊗ 𝑡𝛼 = pr♯2(𝑡𝛼). �

Next, we will study the following diagram of k-schemes:

R
pr1 ��
pr2

�� A1 𝜓 �� P1 , (37)

where A1 = Spec𝑘 [𝑥] is an affine line, R = Δ ∪ H = 𝑉 ((𝑥 − 𝑦) (𝑥𝑦 − 1)) ⊆ A2 = Spec𝑘 [𝑥, 𝑦] is
the union of the hyperbola H = 𝑉 (𝑥𝑦 − 1) and the diagonal Δ = 𝑉 (𝑥 − 𝑦), pr1, pr2 are the projection
morphisms whose respective comorphisms are determined by pr♯1 (𝑥) = 𝑥 and pr♯2(𝑥) = 𝑦, and the
morphism 𝜓 : A1 → P1, viewed as a natural transformation between the corresponding functors of
points, is given by the rule

𝜓(𝑎) = (𝑎2 + 1 : 𝑎) for all 𝑎 ∈ A1.
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Lemma 4.5.13. We have 𝜓 ◦ pr1 = 𝜓 ◦ pr2.

Proof. Let (𝑎, 𝑏) ∈ R. Then 𝜓(pr1 (𝑎, 𝑏)) = 𝜓(𝑎) = (𝑎2+1 : 𝑎) and 𝜓(pr2(𝑎, 𝑏)) = 𝜓(𝑏) = (𝑏2+1 : 𝑏).
However, (𝑎, 𝑏) ∈ R implies that 𝑎 = 𝑏 or 𝑎𝑏 = 1, and in either case we have (𝑎2 + 1)𝑏 = 𝑎(𝑏2 + 1).
Hence, 𝜓(pr1(𝑎, 𝑏)) = 𝜓(pr2(𝑎, 𝑏)). �

We let y be a local coordinate on P1, determined by 𝑦((𝑎 : 1)) = 𝑎 so that 𝑌0 := Spec𝑘 [𝑦] and
𝑌∞ := Spec𝑘 [1/𝑦] form a standard open covering of P1 by two affine lines.

Lemma 4.5.14. Let 𝑋𝑖 = 𝜓−1(𝑌𝑖) and R𝑖 = pr−1
1 (𝑋𝑖) for 𝑖 = 0,∞. Then 𝑋𝑖 is a basic affine open in A1,

and R𝑖 is a basic affine open in R.

Proof. We have 𝑋0 = {𝑎 ∈ A1 : (𝑎2 + 1 : 𝑎) ∈ 𝑌0} = {𝑎 ∈ A1 : 𝑎 ≠ 0}, which is the basic affine open
𝐷 (𝑥) ⊂ A1. Similarly, 𝑋∞ = {𝑎 ∈ A1 : (𝑎2 + 1 : 𝑎) ∈ 𝑌∞} = {𝑎 ∈ A1 : 𝑎2 + 1 ≠ 0}, which is the
basic affine open 𝐷 (𝑥2 + 1) ⊂ A1. The preimage of any basic affine open 𝐷 ( 𝑓 ) ⊂ Spec𝑘 [𝑥] under the
morphism of affine schemes pr1 : R→ A1 is 𝐷 (pr♯1 ( 𝑓 )), which is a basic affine open in R. Therefore,
R0 and R∞ are basic affine opens in R. �

Proposition 4.5.15. 0 �� O(𝑌𝑖)
𝜓♯

�� O(𝑋𝑖)
pr♯1 ��

pr♯2

�� O(R𝑖) is an equaliser diagram of commuta-

tive rings if 𝑖 = 0 or 𝑖 = ∞.

Proof. Let H𝑖 = R𝑖 ∩ H for 𝑖 = 0,∞. By postcomposing pr♯1, pr♯2 with the restriction maps O(R𝑖) �
O(H𝑖), we can replace R𝑖 by H𝑖 in this proof.

First, we consider the case 𝑖 = 0, where the diagram becomes

0 �� 𝑘 [𝑦]
𝜓♯

�� 𝑘 [𝑥, 𝑥−1]
pr♯1 ��

pr♯2

�� 𝑘 [𝑥, 𝑥−1]

and the maps are given by 𝜓♯ (𝑦) = 𝑥 + 𝑥−1, pr♯1 (𝑥) = 𝑥, pr♯2(𝑥) = 𝑥−1. Clearly, 𝜓♯ is injective, and
pr♯1𝜓

♯ = pr♯2𝜓
♯ by Lemma 4.5.13.

Suppose that 𝑎 =
𝑛∑

𝑖=−𝑛
𝑎𝑖𝑥

𝑖 ∈ ker(pr♯1 − pr♯2) for some 𝑎𝑖 ∈ 𝑘 . Then 𝑎𝑖 = 𝑎−𝑖 for all i, so a lies in the

k-linear span of {𝑥𝑛 + 𝑥−𝑛 : 𝑛 ≥ 0}. Hence, 𝑎 ∈ 𝐹𝑚 :=
𝑚∑
𝑛=0

𝑘 (𝑥𝑛 + 𝑥−𝑛) for some 𝑚 ≥ 0. We will show

by induction that 𝐹𝑟 ⊆ 𝑘 [𝑥 + 𝑥−1] for all 𝑟 ≥ 0. The base case 𝑟 = 0 is clear. Assuming inductively that
𝐹𝑟−1 ⊆ 𝑘 [𝑥 + 𝑥−1] for some 𝑟 ≥ 1, we see that 𝑥𝑟 + 𝑥−𝑟 ≡ (𝑥 + 𝑥−1)𝑟mod 𝐹𝑟−1, so 𝑥𝑟 + 𝑥−𝑟 ∈ 𝑘 [𝑥 + 𝑥−1]
as well. Hence,

ker(pr♯1 − pr♯2) = 𝑘 [𝑥 + 𝑥−1], (38)

and the sequence is exact in the middle as required.
Next, we consider the case where 𝑖 = ∞. The diagram becomes

0 �� 𝑘 [𝑦−1]
𝜓♯

�� 𝑘 [𝑥, 1
𝑥2+1 ]

pr♯1 ��

pr♯2

�� 𝑘
[
𝑥, 𝑥−1, 1

𝑥2+1

]
,

where the maps are now given by 𝜓♯ (𝑦−1) = 1
𝑥+𝑥−1 = 𝑥

𝑥2+1 , pr♯1(𝑥) = 𝑥 and pr♯2(𝑥) = 𝑥−1. It is again
clear that 𝜓♯ is injective and that pr♯1𝜓

♯ = pr♯2𝜓
♯ by Lemma 4.5.13.
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Suppose that 𝑎 (𝑥)
(𝑥2+1)𝑛 ∈ ker(pr♯1 − pr♯2) for some 𝑎(𝑥) ∈ 𝑘 [𝑥] and some 𝑛 ≥ 0. Then

𝑎(𝑥)
(𝑥2 + 1)𝑛

=
𝑎(𝑥−1)
(𝑥−2 + 1)𝑛

.

Multiplying through by (𝑥2 + 1)𝑛 shows that 𝑎(𝑥) = 𝑎(𝑥−1)𝑥2𝑛. Hence, deg(𝑎) ≤ 2𝑛, and dividing
through by 𝑥𝑛 shows that 𝑎(𝑥)𝑥−𝑛 ∈ 𝑘 [𝑥, 𝑥−1] is invariant under the substitution 𝑥 ↦→ 𝑥−1. Using
Equation (38), we see that 𝑎(𝑥)𝑥−𝑛 = 𝑏(𝑥 + 𝑥−1) for some 𝑏(𝑥) ∈ 𝑘 [𝑥] with deg 𝑏 ≤ 𝑛. Write
𝑏(𝑥) = 𝑏0 + 𝑏1𝑥 + · · · + 𝑏𝑛𝑥𝑛 for some 𝑏0, · · · , 𝑏𝑛 ∈ 𝑘; then

𝑎(𝑥)
(𝑥2 + 1)𝑛

=
𝑥𝑛

(𝑥2 + 1)𝑛
𝑛∑
𝑖=0

𝑏𝑖

(
𝑥2 + 1
𝑥

) 𝑖
=

𝑛∑
𝑖=0

𝑏𝑖

( 𝑥

𝑥2 + 1

)𝑛−𝑖
∈ 𝑘
[ 𝑥

𝑥2 + 1

]
.

Hence, 𝑎 (𝑥)
(𝑥2+1)𝑛 ∈ 𝑘

[
𝑥

𝑥2+1

]
and the sequence is exact in the middle as required. �

Proposition 4.5.16. R
pr1 ��
pr2

�� A1 𝜓 �� P1 is a coequaliser diagram in LRS.

Proof. Noting that 𝜓 ◦ pr1 = 𝜓 ◦ pr2 by Lemma 4.5.13, this follows from Lemma 4.2.1, applied with
the standard covering {𝑌0 = Spec𝑘 [𝑦], 𝑌∞ = Spec𝑘 [𝑦−1]} of 𝑌 = P1, once we have checked its three
conditions. Condition b) follows from Lemma 4.5.14 and condition c) follows from Proposition 4.5.15,
so it remains to check condition a). This amounts to checking the following:

(i) |𝜓 | : |A1 | → |P1 | is surjective,

(ii) the equivalence classes of the equivalence relation ∼
𝜇

on |A1 | defined by |R|
|pr1 | ��
|pr2 |

�� |A1 | are equal

to the fibres of |𝜓 |,
(iii) the induced map |A1 |/∼

𝜇
−→ |P1 | is a homeomorphism.

For (i) and (ii), for any k-variety of finite type X, we use [MO], Chapter IV, Theorem 2.3 to identify
|𝑋 | with the set of G-orbits in |𝑋𝑘 |, where G = Aut(𝑘/𝑘) and 𝑋𝑘 = 𝑋 ×𝑘 𝑘 is the base-change of X to
𝑘 . Then we have the following commutative diagram

|R𝑘 |
����

��

|A1
𝑘
|
|𝜓𝑘 | ��

��

|P1
𝑘
|

��
|R| �� �� |A1 |

|𝜓 |
�� |P1 |

,

where the vertical arrows are surjective. Chasing this diagram reduces us to the case 𝑘 = 𝑘 .
(i) The map |𝜓 | sends the generic point in |A1 | to the generic point in |P1 |, and 0 ∈ A1 to the point at

infinity (1 : 0) ∈ P1. Any other point in |P1 | is of the form (𝑐 : 1) for some 𝑐 ∈ 𝑘; since k is algebraically
closed, the equation 𝑎 + 𝑎−1 = 𝑐 has a solution, so (𝑐 : 1) ∈ im(|𝜓 |).

(ii) Let 𝑎, 𝑏 ∈ |A1 | be such that 𝜓(𝑎) = 𝜓(𝑏). If 𝜓(𝑎) is the generic point of P1, then a and b
must both be equal to the generic point of A1, so assume otherwise. Then necessarily 𝑎, 𝑏 are closed
points in A1. Since 𝑘 = 𝑘 , we may assume that 𝑎, 𝑏 ∈ A1 (𝑘) = 𝑘 . Now, 𝜓(𝑎) = 𝜓(𝑏) implies that
(𝑎2 + 1 : 𝑎) = (𝑏2 + 1 : 𝑏), hence (𝑎2 + 1)𝑏 = 𝑎(𝑏2 + 1), so (𝑎 − 𝑏) (𝑎𝑏 − 1) = 0 and (𝑎, 𝑏) ∈ R(𝑘).
Setting 𝑢 = (𝑎, 𝑏) ∈ |R|, we see that 𝑎 = pr1 (𝑢) and 𝑏 = pr2 (𝑢) as required.

(iii) The map |𝜓 | : |A1 | → |P1 | is surjective and has finite fibres. Hence, the quotient topology on |P1 |
induced by this map from the Zariski topology on |A1 | is the cofinite topology and therefore coincides
with the Zariski topology on |P1 |. �
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Theorem 4.5.17. Suppose that 𝛾 = {𝛼}, where 𝛼 = 𝜇/𝛼. Then Ξ′𝛾/R′𝜇,𝛾 is also isomorphic to the
projective line P1.

Proof. Since 𝛾 = {𝛼}, we have Ξ′𝛾 = Ξ′𝛼 = Spec𝑘 [𝑡𝛼] and R′𝜇,𝛾 = R′𝜇,𝛼,𝛼 in view of Equation (31).
Since 𝛼 = 𝜇/𝛼, Proposition 4.5.6 tells us that R′𝜇,𝛼,𝛼 = 𝑉 ((𝑥 − 𝑦) (𝑥𝑦 − 1)), where 𝑥 = 𝑡𝛼 ⊗ 1 and
𝑦 = 1 ⊗ 𝑡𝛼. Hence, we have a commutative diagram of schemes

R′𝜇,𝛾
𝑓
𝛾

1 ��

𝑓
𝛾

2

��

�

��

Ξ′𝛾 ��

�
��

Ξ′𝛾/R′𝜇,𝛾

R
pr1 ��
pr2

�� A1 𝜓 �� P1

, (39)

where the top line is the diagram (32), and the vertical arrows are the isomorphisms of schemes whose
corresponding comorphisms are

O(R) = 𝑘 [𝑥, 𝑦]
〈(𝑥 − 𝑦) (𝑥𝑦 − 1)〉

�−→ O(R′𝜇,𝛼,𝛼) and O(A1) = 𝑘 [𝑥] �−→ 𝑘 [𝑡𝛼] = O(Ξ′𝛼),

given by 𝑥 ↦→ 𝑡𝛼 ⊗ 1, 𝑦 ↦→ 1 ⊗ 𝑡𝛽 and 𝑥 ↦→ 𝑡𝛼, respectively. Since 𝜓 is a coequaliser of pr1, pr2 in LRS
by Proposition 4.5.16, this gives the required isomorphism of schemes Ξ′𝛾/R′𝜇,𝛾

�−→ P1. �

We specialize from now on to the case where 𝜇 = id2.

Corollary 4.5.18. Ξ′/R′
id2 is isomorphic to the disjoint union of 𝑝+1

2 projective lines.

Proof. After Corollary 4.5.9, Theorem 4.5.12 and Theorem 4.5.17, Ξ′/R′
id2 is isomorphic to the disjoint

union of |Ω̂/∼
id2
| projective lines. There are exactly two elements 𝛼 ∈ Ω̂ that satisfy 𝛼 = id2/𝛼: If 𝛼 = id 𝑗

for some 𝑗 = 0, · · · , 𝑝 − 2, then 𝛼 = id2/𝛼 if and only if 2 𝑗 ≡ 2mod 𝑝 − 1 which is equivalent to 𝑗 = 1
or 𝑗 = 𝑝+1

2 . These correspond to the singleton equivalence classes, and all other classes have size two.
Therefore, |Ω̂/∼

id2
| = 2 + 𝑝−3

2 = 𝑝+1
2 . �

4.5.3. Regluing the projective lines to form Ξ/R
At this point, we have to introduce more notation.

Definition 4.5.19. For each 1 ≤ 𝑟 ≤ 𝑝+1
2 , let 𝛾𝑟 := {id𝑟 , id2−𝑟 } and define

𝑍𝑟 := Ξ′𝛾𝑟 /R
′
id2 ,𝛾𝑟

.

Note that Ξ′/R′
id2 � 𝑍1

∐
𝑍2
∐
· · ·
∐
𝑍 𝑝+1

2
by Corollary 4.5.9 and Corollary 4.5.18. After Theorem

4.5.12 and Theorem 4.5.17, we know that each 𝑍𝑟 is isomorphic to the projective line P1. Note also that
if 𝛼 = id𝑟 , then 𝛼 = 𝜇/𝛼 if and only if 𝑟 = 1 or 𝑟 = 𝑝+1

2 .

Definition 4.5.20. Let 1 ≤ 𝑟 ≤ 𝑝+1
2 , and write 𝛼 = id𝑟 .

◦ If 𝑟 = 1, let 𝑧𝑟 be the local coordinate on 𝑍𝑟 that pulls back to 𝑡𝛼
𝑡2𝛼+1

under the morphism Ξ′𝛼 � P
1

from the proof of Theorem 4.5.17.
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◦ If 𝑟 ≠ 1 and 𝑟 ≠ 𝑝+1
2 , let 𝑧𝑟 be the local coordinate on 𝑍𝑟 that pulls back to 𝑡𝛼 under the morphism

Ξ′𝛼
∐

Ξ′
id2/𝛼

� P1 from the proof of Theorem 4.5.12.

◦ If 𝑟 = 𝑝+1
2 , let 𝑧𝑟 be the local coordinate on 𝑍𝑟 that pulls back to 𝑡𝛼 + 𝑡−1

𝛼 under the morphism
Ξ′𝛼 � P

1 from the proof of Theorem 4.5.17.
◦ Let 𝑂𝑟 ,∞𝑟 ∈ 𝑍𝑟 be the closed points defined by 𝑂𝑟 := {𝑧𝑟 = 0} and∞𝑟 := {𝑧𝑟 = ∞}.

Recall that for any 𝛼 ∈ Ω̂, the origin on the affine lineΞ′𝛼 is denoted by𝑂𝛼 and that 𝑞′ : Ξ′ � Ξ′/R′
id2

denotes the quotient map. After revisiting the proofs of Theorem 4.5.12 and Theorem 4.5.17, we have
the following

Lemma 4.5.21. Let 1 ≤ 𝑟 ≤ 𝑝+1
2 .

◦ If 𝑟 = 1, then 𝑞′(𝑂id1) = 𝑂1.
◦ If 𝑟 ≠ 1 and 𝑟 ≠ 𝑝+1

2 , then 𝑞′(𝑂id𝑟 ) = 𝑂𝑟 and 𝑞′(𝑂id2−𝑟 ) = ∞𝑟 .
◦ If 𝑟 = 𝑝+1

2 , then 𝑞′(𝑂
id

𝑝+1
2
) = ∞ 𝑝+1

2
.

Recall the coequaliser diagram Ξsing
𝑎 ��
𝑏

�� Ξ′
𝜃 �� Ξ from Proposition 4.2.5. After Proposition

4.5.4, we wish to better understand the coequaliser diagram

Ξsing
𝑞′𝑎 ��
𝑞′𝑏

�� Ξ′/R′
id2

𝑠 �� (Ξ′/R′
id2)/Ξsing .

Lemma 4.5.22. The pairs {(𝑞′𝑎(𝑠𝑟 ), 𝑞′𝑏(𝑠𝑟 )) : 𝑟 = 1, · · · , 𝑝−3
2 } are explicitly given as follows:

(𝑞′𝑎(𝑠𝑟 ), 𝑞′𝑏(𝑠𝑟 )) = (𝑂𝑟 ,∞𝑟+2) for all 𝑟 = 1, · · · , 𝑝 − 3
2

.

Proof. Suppose first that 𝑟 ≠ 𝑝−3
2 . Then using Definition 4.2.4.b and Lemma 4.5.21, we have

𝑞′(𝑎(𝑠𝑟 )) = 𝑞′(𝑂id𝑟 ) = 𝑂𝑟 and 𝑞′(𝑏(𝑠𝑟 )) = 𝑞′(𝑂id−𝑟 ) = 𝑞′(𝑂id2−(𝑟+2) ) = ∞𝑟+2,

where the last equality holds because 1 ≤ 𝑟 < 𝑝−3
2 implies that 1 < 𝑟 + 2 < 𝑝+1

2 .
Suppose now that 𝑟 = 𝑝−3

2 . Then we still have 𝑞′(𝑎(𝑠𝑟 )) = 𝑞′(𝑂id𝑟 ) = 𝑂𝑟 , but now the last case in
Lemma 4.5.21 gives

𝑞′(𝑏(𝑠 𝑝−3
2
)) = 𝑞′(𝑂

id−
(
𝑝−3

2
) ) = 𝑞′(𝑂

id
𝑝+1

2
) = ∞ 𝑝+1

2
�

Theorem 4.5.23. The locally ringed space Ξ/R is a scheme.

Proof. We know that Ξ′𝛾/R′id2 ,𝛾
is a scheme for each 𝛾 ∈ Ω̂/∼

id2
by Theorem 4.5.12 and Theorem 4.5.17.

Hence, Ξ′/R′
id2 is a scheme by Corollary 4.5.9. By Proposition 4.5.4, it remains to show that the locally

ringed space (Ξ′/R′
id2)/Ξsing is a scheme. Now, Ξ′/R′

id2 �
𝑝+1

2∐
𝑟=1

𝑍𝑟 and we define

𝑋1 :=
∐

𝑟≡1 or 2 mod 4
𝑍𝑟 and 𝑋2 :=

∐
𝑟≡3 or 0 mod 4

𝑍𝑟
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so that 𝑋1
∐
𝑋2 = Ξ′/R′

id2 . We also define maps 𝜃1, 𝜃2 : Ξsing → Ξ′/R′
id2 as follows:

𝜃1(𝑠𝑟 ) =
{
𝑂𝑟 if 𝑟 ≡ 1 or 2 mod 4
∞𝑟+2 if 𝑟 ≡ 3 or 0 mod 4 and 𝜃2(𝑠𝑟 ) =

{
∞𝑟+2 if 𝑟 ≡ 1 or 2 mod 4
𝑂𝑟 if 𝑟 ≡ 3 or 0 mod 4

so that 𝜃1 (Ξsing) ⊆ 𝑋1 and 𝜃2 (Ξsing) ⊆ 𝑋2. Using Lemma 4.5.22, for all 𝑠𝑟 ∈ Ξsing we have

(𝜃1 (𝑠𝑟 ), 𝜃2 (𝑠𝑟 )) = (𝑞′𝑎(𝑠𝑟 ), 𝑞′𝑏(𝑠𝑟 )) or (𝑞′𝑏(𝑠𝑟 ), 𝑞′𝑎(𝑠𝑟 )).

Let 𝑠 : Ξ′/R′
id2 → (Ξ′/R′id2)/Ξsing be a coequaliser of Ξsing

𝑞′𝑎 ��
𝑞′𝑏

�� 𝑋1
∐
𝑋2 ; it follows that

Ξsing
𝜃1 ��
𝜃2

�� 𝑋1
∐
𝑋2

𝑠 �� (Ξ′/R′
id2 )/Ξsing

is a coequaliser diagram in LRS. Hence, (Ξ′/R′
id2 )/Ξsing is isomorphic to the gluing of 𝑋1 and 𝑋2 along

𝜃1 : Ξsing → 𝑋1 and 𝜃2 : Ξsing → 𝑋2. Since 𝜃1 and 𝜃2 are both closed embeddings, this gluing is a
scheme by Proposition 1.1.1 [Ana]. �

Using Lemma 4.5.22, we can also deduce the following

Corollary 4.5.24. Write 𝑃𝑟 := 𝑠(𝑍𝑟 ) ⊂ (Ξ′/R′id2)/Ξsing for 𝑟 = 1, · · · , 𝑝+12 .

a) Suppose that 𝑝 ≡ 1mod 4 so that 𝑝+1
2 is odd and 𝑝−1

2 is even. Then the connected component of 𝑃1
in (Ξ′/R′

id2)/Ξsing is given by

𝑃1 ∪ 𝑃3 ∪ 𝑃5 ∪ · · · ∪ 𝑃 𝑝+1
2

and the connected component of 𝑃2 in (Ξ′/R′
id2)/Ξsing is given by

𝑃2 ∪ 𝑃4 ∪ 𝑃6 ∪ · · · ∪ 𝑃 𝑝−1
2
.

b) Suppose that 𝑝 ≡ 3mod 4 so that 𝑝−1
2 is odd and 𝑝+1

2 is even. Then the connected component of 𝑃1
in (Ξ′/R′

id2)/Ξsing is given by

𝑃1 ∪ 𝑃3 ∪ 𝑃5 ∪ · · · ∪ 𝑃 𝑝−1
2

and the connected component of 𝑃2 in (Ξ′/R′
id2)/Ξsing is given by

𝑃2 ∪ 𝑃4 ∪ 𝑃6 ∪ · · · ∪ 𝑃 𝑝+1
2
.
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Example 4.5.25. When 𝑝 = 13, the schemes Ξ, Ξ′, Ξ′/R′
id2 and Ξ/R look as follows:

Ξ

Ξ′

Ξ′/R′

Ξ/R

0 1 11 2 10 3 9 4 8 5 7 6

0 2 4 10 6 8 1 3 11 5 9 7

𝑍2 𝑍4 𝑍6 𝑍1 𝑍3 𝑍5 𝑍7

0 2 10 4 8 6 1 11 3 9 5 7

𝑃2 𝑃4 𝑃6 𝑃1 𝑃3 𝑃5 𝑃7

0 2 10 4 8 6 1 11 3 9 5 7

The blue colour indicates those connected components of Ξ′ that are glued only to themselves in
Ξ′/R′.

A. Appendices

A.1. Some categorical results about colimits and coequalisers

We omit the proof of the following standard result.

Lemma A.1. Suppose that 𝑞 : Y → Z is a coequaliser of the arrows 𝑓 , 𝑔 : X → Y in a category C.
Then q is an epimorphism.

Lemma A.2. Let C be a category, containing the following diagram:

S

𝑏

��

𝑎

��

𝑞′𝑏



�
��

��
��

��
��

��
��

�

𝑞′𝑎



�
��

��
��

��
��

��
��

�

R′
𝑓 ′ ��
𝑔′

�� X ′
𝑞′

��

𝜃

��

Y ′
𝑠



�
��

��
��

�

R
𝑓 ��
𝑔

�� X 𝑞
�� Y Z .

(A.1)
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Suppose that in this diagram, we have

a) q is a coequaliser of R
𝑓 ��
𝑔

�� X ,

b) 𝑞′ is a coequaliser of R′
𝑓 ′ ��
𝑔′

�� X ′ ,

c) 𝜃 is a coequaliser of S
𝑎 ��
𝑏

�� X ′ , and

d) s is a coequaliser of S
𝑞′𝑎 ��
𝑞′𝑏

�� Y ′ .

Suppose further that there exists a morphism 𝜃 ′ : R′ → R such that:

e) 𝜃 ′ is an epimorphism, and
f) 𝜃 𝑓 ′ = 𝑓 𝜃 ′ and 𝜃𝑔′ = 𝑔𝜃 ′.

Then there exists an isomorphism 𝜑 : Y �−→ Z such that 𝑠𝑞′ = 𝜑𝑞𝜃.

Proof. By d), we have 𝑠𝑞′𝑎 = 𝑠𝑞′𝑏. Hence, by c), there is a unique morphism 𝛼 : X → Z such that
𝑠𝑞′ = 𝛼𝜃 . Using this, we have 𝛼 𝑓 𝜃 ′ 𝑓 )= 𝛼𝜃 𝑓 ′ = 𝑠𝑞′ 𝑓 ′

𝑏)
= 𝑠𝑞′𝑔′ = 𝛼𝜃𝑔′

𝑓 )
= 𝛼𝑔𝜃 ′. Then 𝛼 𝑓 = 𝛼𝑔 by e),

so by a), there is a unique morphism 𝜑 : Y → Z such that 𝛼 = 𝜑𝑞 .

Next, we have 𝑞𝜃 𝑓 ′ 𝑓 )= 𝑞 𝑓 𝜃 ′
𝑎)
= 𝑞𝑔𝜃 ′

𝑓 )
= 𝑞𝜃𝑔′, so by b), there is a unique morphism 𝜏 : Y ′ → Y such

that 𝑞𝜃 = 𝜏𝑞′ . Then 𝜏𝑞′𝑎 = 𝑞𝜃𝑎
𝑐)
= 𝑞𝜃𝑏 = 𝜏𝑞′𝑏, so by d), there is a unique morphism 𝜓 : Z → Y

such that 𝜓𝑠 = 𝜏 . We will show that 𝜑 and 𝜓 are mutually inverse.
Firstly, 𝜑𝜓𝑠𝑞′ = 𝜑𝜏𝑞′ = 𝜑𝑞𝜃 = 𝛼𝜃 = 𝑠𝑞′. But 𝑞′ and s are coequalisers by b) and d), hence they are

epimorphisms by Lemma A.1. Therefore, 𝜑𝜓 = 1Z . Secondly, 𝜓𝜑𝑞𝜃 = 𝜓𝛼𝜃 = 𝜓𝑠𝑞′ = 𝜏𝑞′ = 𝑞𝜃. Since
𝜃 and q are coequalisers by c) and a), they are epimorphisms by Lemma A.1. Hence, 𝜓𝜑 = 1Y . Finally,
𝜑𝑞𝜃 = 𝛼𝜃 = 𝑠𝑞′. �

We omit the proof of the following standard result.

Lemma A.3. Let I be a set, and let C be a category with coproducts. Suppose that{
R𝑖

𝑎𝑖 ��
𝑏𝑖

�� 𝑋𝑖
𝑞𝑖 �� 𝑌𝑖 , 𝑖 ∈ 𝐼

}
is a family of coequaliser diagrams in C. Then

∐
𝑖∈𝐼

R𝑖

∐
𝑖∈𝐼
𝑎𝑖

��∐
𝑖∈𝐼
𝑏𝑖

��
∐
𝑖∈𝐼

𝑋𝑖

∐
𝑖∈𝐼
𝑞𝑖

�� ∐
𝑖∈𝐼

𝑌𝑖

is also a coequaliser diagram in C.

A.2. An alternative stability proof

By Proposition 2.2.3, Mod𝑘 (𝐺) has Krull dimension 1, so the only nontrivial term in the Krull-dimension
filtration of Mod𝑘 (𝐺) is Mod𝑘 (𝐺)0. Its stability then follows from our general result, Proposition 3.7.8.
Here, we give an alternative, more direct, argument for the stability of Mod𝑘 (𝐺)0. Our argument is
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inspired by Paškūnas’ proof of the corresponding result for the group 𝐺𝐿2 (Q𝑝) and representations
with a fixed central character ([Pas] Proposition 5.16).

An H-module is called locally finite if each of its elements is contained in a submodule of finite
length. By Remark 2.2.2, the locally finite H-modules form the localising subcategory Mod(H)0 of
objects of Krull dimension 0.

Lemma A.2.1. Mod(𝐻)0 is stable.

Proof. By [MCR] Corollary 13.1.13(iii) and Theorem 13.10.3(i), any simple module over the affine PI
k-algebra H is finite dimensional over k. Hence, a locally finite module is the same as a module in which
every element is contained in a finite-dimensional submodule. It easily follows that Mod(𝐻)0 satisfies
the criterion [Gab] Proposition V.6.12. �

Correspondingly, a G-representation in Mod𝑘 (𝐺) is locally finite if each of its elements is contained
in a subrepresentation of finite length.

Lemma A.2.2. If the representation V in Mod𝑘 (𝑆𝐿2 (Z𝑝)) is admissible, then also its injective hull in
Mod𝑘 (𝑆𝐿2 (Z𝑝)) is admissible.

Proof. Put 𝐾 := 𝑆𝐿2 (Z𝑝). It is well known that a representation V in Mod𝑘 (𝐾) is admissible if and
only if its Pontrjagin dual 𝑉∨ is finitely generated as a module over the completed group ring 𝑘 [[𝐾]].
The inclusion 𝑉 ↩→ 𝐸 (𝑉) into an injective hull dualizes to a projective cover 𝐸 (𝑉)∨ � 𝑉∨. Since the
ring 𝑘 [[𝐻]] is noetherian (cf. the explanations in the proof of [Sch] Proposition 5) this cover 𝐸 (𝑉)∨
must be finitely generated as a 𝑘 [[𝐻]]-module. It follows that 𝐸 (𝑉) is admissible. �

Lemma A.2.3. For a representation V in Mod𝑘 (𝐺), we have:

a) V is of finite length if and only if V is finitely generated and admissible.
b) V is locally finite if and only if it is locally admissible (in the sense of [EP]).

Proof. a) Suppose that V is of finite length. Then it obviously is finitely generated. In order to see that V
is admissible, we may assume that it is irreducible. But then, by Theorem 2.1.1 the H-module𝑉 𝐼 is finite
dimensional, which means that V is admissible. Now, assume, vice versa, that V is finitely generated
and admissible. Using a filtration of V as in Lemma 2.1.3 and the fact that admissibility is preserved by
passing to subquotients ([Eme] Proposition 2.2.13), we may assume that V lies in Mod𝐼 (𝐺). Since 𝑉 𝐼
is finite dimensional, the equivalence in Theorem 2.1.1 tells us that V is of finite length.

b) If V is locally finite then, by a), it is locally admissible. Suppose therefore that V is locally
admissible. But then it is the union of admissible and finitely generated subrepresentations. Again, by
a) it follows that V is the union of subrepresentations of finite length. �

Lemma A.2.4. If V is an injective object in Mod𝑘 (𝐺)0, then V is also an injective object in
Mod𝑘 (𝑆𝐿2 (Z𝑝)).

Proof. The proof is almost literally the same as for [EP] Corollary 3.8. For the convenience of the
reader, we note:

– Use Lemma A.3.b to replace the assumption that V is locally finite by the assumption that V is locally
admissible, which loc. cit. uses.

– The group 𝑆𝐿2 (Q𝑝) is the amalgam of 𝑆𝐿2 (Z𝑝) and ( 0 1
𝑝 0 )𝑆𝐿2 (Z𝑝) ( 0 𝑝−1

1 0 ) along the Iwahori sub-
group (cf. [Ser] II.4.1 Corollary 1).

We also point out that in loc. cit. a version of Lemma A.2 is used without mentioning it. �

Proposition A.2.5. Mod𝑘 (𝐺)0 is stable.

Proof. By Gabriel’s criterion (cf. [Ste] Proposition VI.7.1), we have to check the following: Let𝑉0 ⊆ 𝑉
be any essential extension in Mod𝑘 (𝐺) (in particular 𝑉0 ≠ {0}) such that 𝑉0 is locally finite. We then
have to show that V is locally finite as well. First of all, by replacing V by an injective hull, we may
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assume that V is an injective object. Secondly, since Mod𝑘 (𝐺)0 is localising, by possibly enlarging 𝑉0,
we may assume that 𝑉0 is the maximal locally finite subrepresentation of V. It is then straightforward
to see that 𝑉0 is an injective object in Mod𝑘 (𝐺)0. Hence, using Frobenius reciprocity we deduce from
Lemma A.4 that

Ext1Mod𝑘 (𝐺) (ind𝐺𝐾 (𝜎), 𝑉0) = Ext1Mod𝑘 (𝐾 ) (𝜎,𝑉0) = 0 (A.2)

for any smooth representation 𝜎 of the subgroup 𝐾 := 𝑆𝐿2 (Z𝑝).
Reasoning by contradiction we assume that 𝑉0 ≠ 𝑉 . It suffices to construct a nonzero locally finite

subrepresentation of 𝑉/𝑉0. For this, we pick an irreducible K-subrepresentation 𝜎 in the K-socle of
𝑉/𝑉0. We also pick a vector 𝑣 ∈ (𝑉/𝑉0)𝐼 which generates 𝜎 as a K-representation. We let �̄� ⊆ 𝑉/𝑉0
denote the G-subrepresentation generated by v and by X its preimage in V. We obtain:

a) The short exact sequence 0 → 𝑉0 → 𝑋 → �̄� → 0 in Mod𝑘 (𝐺) does not split since 𝑉0 ↩→ 𝑋 is an
essential extension.

b) By the Frobenius reciprocity equality Hom𝑘 [𝐾 ] (𝜎, �̄�) = Hom𝑘 [𝐺 ] (ind𝐺𝐾 (𝜎), �̄�) the inclusion 𝜎 ⊆
�̄� corresponds to a G-homomorphism �̄� : ind𝐺𝐾 (𝜎) � �̄� , which is surjective since v lies in its image.

Applying Equation (A.2) to a) shows that the map Hom𝑘 [𝐺 ] (ind𝐺𝐾 (𝜎), 𝑋) � Hom𝑘 [𝐺 ] (ind𝐺𝐾 (𝜎), �̄�) is
surjective so that �̄� has a preimage𝜓 : ind𝐺𝐾 (𝜎) → 𝑋 . If �̄� would also be injective, then𝜓◦�̄�−1 : �̄� → 𝑋
would split the sequence in a). It follows that �̄� is a proper quotient map. Since �̄� is a map in Mod𝐼𝑘 (𝐺) the
equivalence of categories in Theorem 2.1.1 implies that the sequence �̄�𝐼 : ind𝐺𝐾 (𝜎)𝐼 � �̄� 𝐼 is a proper
quotient map of H-modules. We claim that any proper H-quotient of ind𝐺𝐾 (𝜎)𝐼 has finite k-dimension.
Again, Theorem 2.1.1 then implies that �̄� has finite length, which would contradict the maximality of𝑉0.

In order to determine the H-module structure of ind𝐺𝐾 (𝜎)𝐼 , we introduce the finite-dimensional
subalgebra 𝐻0 := End𝑘 [𝐾 ] (𝑘 [𝐾/𝐼])op of H. It is well known that the 𝐻0-module of invariants 𝜎𝐼 is
one-dimensional and therefore provides a character 𝜒 : 𝐻0 → 𝑘 . By [Oll] Lemma 3.6, there is an
isomorphism of H-modules ind𝐺𝐾 (𝜎)𝐼 � 𝐻 ⊗𝐻0 𝜒.5

On the other hand recall the notations introduced in §4.1. Note 𝜏0 and 𝑒1 lie in 𝐻0 and that 𝑍 (𝐻)
contains the polynomial ring 𝑘 [𝜁] by Lemma 4.1.2. As a consequence of [OS18] Corollary 3.4, we have
the isomorphism of 𝑘 [𝜁]-modules

𝑘 [𝜁] ⊕ 𝑘 [𝜁] �−−→ 𝐻 ⊗𝐻0 𝜒

which sends (1, 0) to 1 ⊗ 1 and (0, 1) to 𝜏1 ⊗ 1.
Let 𝑄 := 𝑘 (𝜁) be the field of fractions of 𝑘 [𝜁], and let 𝑉 := 𝑄 ⊗𝑘 [𝜁 ] (𝐻 ⊗𝐻0 𝜒). Then V is a two-

dimensional vector space over Q with basis 𝑣, 𝑤, where 𝑣 := 1⊗ 1⊗ 1 and 𝑤 := 1⊗ 𝜏1 ⊗ 1. Suppose now
that we have a nonzero H-submodule of infinite codimension in 𝐻 ⊗𝐻0 𝜒. It gives rise to a line in the
vector space V which is respected by the Q-linear action of 𝜏0 and 𝜏1. Let 𝑎 := 𝜒(𝑒1) and 𝑏 := 𝜒(𝜏0).
So, a is 0 or 1 and b is some element of k. We calculate that the matrix A of the action of 𝜏0 with respect
to the basis 𝑣, 𝑤 is ( 𝑏 𝜁−𝑎 (𝑏+1)0 −(𝑎+𝑏) ) and the matrix B of the action of 𝜏1 with respect to the same basis is
( 0 0

1 −𝑎 ). The minimum polynomial of B is visibly 𝑋2 + 𝑎𝑋 . If 𝑎 = 0, then B is nilpotent and the only
𝜏1-stable line in V is spanned by w. If 𝑎 = 1, then B is diagonalizable, and there is an additional 𝜏1-stable
line spanned by 𝑣 + 𝑤. So we just need to check that these two lines are not 𝜏0-stable. Passing to the
matrices we need to check that the column vectors ( 0

1 )and ( 𝑎1 )are not A-eigenvectors:

– 𝐴( 0
1 ) = (

𝜁−𝑎 (𝑏+1)
−(𝑎+𝑏) ) is not in 𝑄( 0

1 ) since 𝜁 − 𝑎(𝑏 + 1) is not zero in Q;
– 𝐴( 𝑎1 ) = (

𝜁−𝑎
−(𝑎+𝑏) ) = 𝑐(

𝑎
1 ) for some 𝑐 ∈ 𝑄 implies 𝑐 = −(𝑎 + 𝑏) ∈ 𝑘 , but also 𝜁 − 𝑎 = 𝑐𝑎 ∈ 𝑘 , which

is impossible. �

5In [Oll], the field k is assumed to be an algebraic closure of F𝑝 . But in our situation all irreducible mod p representations of
𝑆𝐿2 (F𝑝) are defined over F𝑝 , which makes this assumption unnecessary.
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