The Coma cluster is the richest and most compact of the nearby clusters, yet there is growing evidence that its formation is still on-going. A sensitive probe of this evolution is the dynamics of intracluster stars, which are unbound from galaxies while the cluster forms, according to cosmological simulations. With a new multi-slit imaging spectroscopy technique pioneered at the 8.2 m Subaru telescope and FOCAS, we can now detect and measure the line-of-sight velocities of the intracluster planetary nebulae which are associated with the diffuse stellar population of stars, at 100 Mpc distance. We detect significant velocity substructures within a 6 arcmin diameter field, centred on the Coma X-ray cluster emission. One substructure is present at $\sim $5000 km s$^{-1}$, probably from infall of a galaxy group, while the main intracluster stellar component moves at $\sim $6500 km s$^{-1}$. Hence the ICPNs associated with the diffuse light at the position of the MSIS field are not bound to the nearby cD galaxy NGC 4874, whose radial velocity is $\sim $700 km s$^{-1}$ higher.