We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the target article, Bowers et al. dispute deep artificial neural network (ANN) models as the currently leading models of human vision without producing alternatives. They eschew the use of public benchmarking platforms to compare vision models with the brain and behavior, and they advocate for a fragmented, phenomenon-specific modeling approach. These are unconstructive to scientific progress. We outline how the Brain-Score community is moving forward to add new model-to-human comparisons to its community-transparent suite of benchmarks.
Excavations conducted by Beloit College in 1958 and 1960 identified the site of La Magdalena in the Bajío of Mexico. Investigators have since highlighted three primary phases of occupation at La Magdalena, two of which were proposed to have been culturally influenced by Teotihuacan or Tula. Modern research in the Bajío mostly diverges from those postulations of distant connections, supplanting them with local patterns that hold much more explanatory power. Archaeometric studies are pivotal in this regard but have thus far been infrequently used. This research analyzes the obsidian assemblage from La Magdalena and finds a nearly ubiquitous utilization of a local obsidian source known as Ojo Zarco. These findings merit a reevaluation of obsidian in the eastern Bajío and argue for more archaeometric studies that elucidate local procurement patterns.
A core region is the first place for expected shifts in archaeological materials before, during, and after political changes like state emergence and imperial consolidation. Yet, studies of ceramic production have shown that there are sometimes limited or more subtle changes in the ceramic economy throughout such political fluctuations. This article synthesizes recent efforts to address political economic changes via geochemical characterization (neutron activation analysis; NAA) in the Lake Pátzcuaro Basin in western Mexico. This region was home to the Purépecha state and then empire (Tarascan; ca. AD 1350–1530), one of the most powerful kingdoms in the Americas before European arrival. The combined ceramic dataset from four sites in the region result in eight geochemical groups. Our analysis indicates that the region experienced long-term and relatively stable ceramic production that was not substantially altered by the emergence of the state and empire. In addition, we find evidence for (1) dispersed, localized production; (2) long-lived compositional ceramic recipes; and (3) a complex ceramic economy with differential community participation. We discuss why documenting local ceramic production and craft production more generally is important for the study of past political economies.
Crop residue can intercept and adsorb residual herbicides, leading to reduced efficacy. However, adsorption can sometimes be reversed by rainfall or irrigation. Greenhouse experiments were conducted to evaluate the effect of differential overhead irrigation level on barnyardgrass response to acetochlor, pyroxasulfone, and pendimethalin applied to bare soil or wheat straw–covered soil. Acetochlor applied to wheat straw–covered soil resulted in 25% to 40% reduced control, 30 to 50 more plants 213 cm−2, and greater biomass than bare soil applications, regardless of irrigation amount. Barnyardgrass suppression by pyroxasulfone applications to wheat straw–covered soil improved with increased irrigation; however, weed control levels similar to bare soil applications were not observed after any irrigation amount. Barnyardgrass densities from pyroxasulfone applications to bare soil decreased with irrigation but did not change in applications to wheat straw–covered soil. Aboveground barnyardgrass biomass from pyroxasulfone decreased with greater irrigation amounts in both bare soil and wheat straw–covered soil applications; however, decreased efficacy in wheat straw–covered soil applications was not alleviated with irrigation. Pendimethalin was the only herbicide tested that displayed reduced efficacy when irrigation amounts increased in applications to both bare soil and wheat straw–covered soil. Barnyardgrass control from pendimethalin applied to wheat straw–covered soil was similar to bare soil applications when approximately 0.3 to 1.2 cm of irrigation was applied; however, irrigation amounts greater than 1.2 cm resulted in greater barnyardgrass control in bare soil applications. No differences between wheat straw–covered soil and bare soil applications of pendimethalin were observed for barnyardgrass densities. These data indicate that increased irrigation or rainfall level can increase efficacy of acetochlor and pyroxasulfone. Optimal rainfall or irrigation amounts required for efficacy similar to bare soil applications are herbicide specific, and some herbicides, such as pendimethalin, may be adversely affected by increased rainfall or irrigation.
Health-related fear is a normal and common response in the face of the global pandemic of COVID-19. Children and young people are frequently being exposed to messages about the threat to health, including from the media and authorities. Whilst for most, their anxiety will be proportionate to the threat, for some, existing pre-occupation with physical symptoms and illness will become more problematic. There is a growing body of evidence that health anxiety may occur in childhood, however much of the literature is taken from research using adult samples. This practitioner review aims to give an overview of the assessment and treatment of health-related worries in children and young people in the context of the COVID-19 pandemic. This review is based on the limited existing evidence in this population and the more substantial evidence base for treating health anxiety in adults. We consider the adaptations needed to ensure such interventions are developmentally appropriate.
The lack of radiation knowledge among the general public continues to be a challenge for building communities prepared for radiological emergencies. This study applied a multi-criteria decision analysis (MCDA) to the results of an expert survey to identify priority risk reduction messages and challenges to increasing community radiological emergency preparedness.
Methods:
Professionals with expertise in radiological emergency preparedness, state/local health and emergency management officials, and journalists/journalism academics were surveyed following a purposive sampling methodology. An MCDA was used to weight criteria of importance in a radiological emergency, and the weighted criteria were applied to topics such as sheltering-in-place, decontamination, and use of potassium iodide. Results were reviewed by respondent group and in aggregate.
Results:
Sheltering-in-place and evacuation plans were identified as the most important risk reduction measures to communicate to the public. Possible communication challenges during a radiological emergency included access to accurate information; low levels of public trust; public knowledge about radiation; and communications infrastructure failures.
Conclusions:
Future assessments for community readiness for a radiological emergency should include questions about sheltering-in-place and evacuation plans to inform risk communication.
Growing urbanization and rapid changes in dietary patterns and lifestyle led to a nutrition transition in several Arabic countries, including Egypt. While Egyptian women have one of the highest mean body mass index worldwide, they also suffer from several micronutrient deficiencies, more particularly iron and vitamin D. The objective of this study was to identify changes needed in dietary practices and product offer, which could help to rebalance energy and nutrient intakes for women living in urban Egypt. Food intakes were obtained from a 4-days dietary record in 130 women aged 19–30 years from urban Egypt. Food prices were collected in modern and traditional trades typical from middle socio-economic classes in Cairo to calculate diet cost. Modeling analyses (with Optifood software) were used to identify problem nutrients and design affordable food-based recommendations (FBRs). The study assessed whether the most consumed foods (i.e. consumed by > 5% of women) could theoretically ensure nutrient adequacy under the mean diet cost, without exceeding recommendations in energy, SFAs, sugars and sodium. The potential of fortified foods to improve intakes of the most problematic micronutrient to cover was tested in additional modeling analyses. Preliminary results from modeling analyses indicate that iron appeared as the most limiting nutrient with locally consumed foods. Daily consumption of fruits, vegetables, milk or yoghurt, and tahini (sesame paste) associated with specific food choices in the meat-fish-eggs category would result in a low percentage of women at risk of inadequate intakes for 11 out of 12 modeled micronutrients. Among the fortified foods tested, iron fortified bread, rice, milk or yoghurt are the most promising vectors. Local and consumed foods allow to meet nutrient adequacy for most nutrients except iron, for which fortified products would be required. Tailored strategies are needed to promote acceptable FBRs (and fortified products) and secure that nutrient requirements are met by most Egyptian women.
Astrophysics Telescope for Large Area Spectroscopy Probe is a concept for a National Aeronautics and Space Administration probe-class space mission that will achieve ground-breaking science in the fields of galaxy evolution, cosmology, Milky Way, and the Solar System. It is the follow-up space mission to Wide Field Infrared Survey Telescope (WFIRST), boosting its scientific return by obtaining deep 1–4 μm slit spectroscopy for ∼70% of all galaxies imaged by the ∼2 000 deg2 WFIRST High Latitude Survey at z > 0.5. Astrophysics Telescope for Large Area Spectroscopy will measure accurate and precise redshifts for ∼200 M galaxies out to z < 7, and deliver spectra that enable a wide range of diagnostic studies of the physical properties of galaxies over most of cosmic history. Astrophysics Telescope for Large Area Spectroscopy Probe and WFIRST together will produce a 3D map of the Universe over 2 000 deg2, the definitive data sets for studying galaxy evolution, probing dark matter, dark energy and modifications of General Relativity, and quantifying the 3D structure and stellar content of the Milky Way. Astrophysics Telescope for Large Area Spectroscopy Probe science spans four broad categories: (1) Revolutionising galaxy evolution studies by tracing the relation between galaxies and dark matter from galaxy groups to cosmic voids and filaments, from the epoch of reionisation through the peak era of galaxy assembly; (2) Opening a new window into the dark Universe by weighing the dark matter filaments using 3D weak lensing with spectroscopic redshifts, and obtaining definitive measurements of dark energy and modification of General Relativity using galaxy clustering; (3) Probing the Milky Way’s dust-enshrouded regions, reaching the far side of our Galaxy; and (4) Exploring the formation history of the outer Solar System by characterising Kuiper Belt Objects. Astrophysics Telescope for Large Area Spectroscopy Probe is a 1.5 m telescope with a field of view of 0.4 deg2, and uses digital micro-mirror devices as slit selectors. It has a spectroscopic resolution of R = 1 000, and a wavelength range of 1–4 μm. The lack of slit spectroscopy from space over a wide field of view is the obvious gap in current and planned future space missions; Astrophysics Telescope for Large Area Spectroscopy fills this big gap with an unprecedented spectroscopic capability based on digital micro-mirror devices (with an estimated spectroscopic multiplex factor greater than 5 000). Astrophysics Telescope for Large Area Spectroscopy is designed to fit within the National Aeronautics and Space Administration probe-class space mission cost envelope; it has a single instrument, a telescope aperture that allows for a lighter launch vehicle, and mature technology (we have identified a path for digital micro-mirror devices to reach Technology Readiness Level 6 within 2 yr). Astrophysics Telescope for Large Area Spectroscopy Probe will lead to transformative science over the entire range of astrophysics: from galaxy evolution to the dark Universe, from Solar System objects to the dusty regions of the Milky Way.
Recent evidence from very young human infants' responses to human and nonhuman primate vocalizations offers new insights – and brings new questions – to the forefront for those who seek to integrate primate-general and human-specific mechanisms of acoustic communication with theories of language acquisition.
Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene–nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need for new methodologies and the use of comprehensive analyses of nutrient–genotype interactions involving large and diverse populations. The objective of the present paper is to stimulate discourse and collaboration among nutrigenomic researchers and stakeholders, a process that will lead to an increase in global health and wellness by reducing health disparities in developed and developing countries.
In Gilbert & Sullivan's undeservedly obscure operetta, Utopia Ltd., English invaders seek to colonize the impressionable citizens of this tropical island paradise by employing “a marvelous philologist who'll undertake to show, that ‘yes’ is but another and a neater form of ‘no.’” In our two-party form of government, citizens are colonized the same way, proving that truth can be just as goofy as fiction. We can say No to one candidate only by saying Yes to the other. That is American democracy, reinforced by laws and courts. In many of our states there are more laws concerned with the institution of political parties than there are laws concerned with the institution of marriage. This legal safety net for the two-party system was reinforced in 2000 by a decisive 7–2 Supreme Court opinion invalidating as unconstitutional a California “blanket primary” law giving voters the power to pick anyone they want—from any political party or any independent—to nominate as their candidate to run in the general election for a particular elective office. The Court called the blanket primary “a stark repudiation of freedom of association” that stripped the political parties of the ability to control their own nominating process.