Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-24T14:02:05.071Z Has data issue: false hasContentIssue false

Kinetics of Mg-Ni saponite crystallization from precursor mixtures

Published online by Cambridge University Press:  14 October 2024

Chaoqun Zhang
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, China CNRS, Université de Poitiers, Institut de Chimie des Milieux et Matériaux de Poitiers-IC2MP, 86022 Poitiers, France
Alain Decarreau
Affiliation:
CNRS, Université de Poitiers, Institut de Chimie des Milieux et Matériaux de Poitiers-IC2MP, 86022 Poitiers, France
Philippe Blanc
Affiliation:
Bureau de recherches géologiques et minières (BRGM), 3 Avenue C. Guillemin, BP6009, F-45060 Orléans, France
Fabien Baron
Affiliation:
CNRS, Université de Poitiers, Institut de Chimie des Milieux et Matériaux de Poitiers-IC2MP, 86022 Poitiers, France
Yuhuan Yuan
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, China
Qi Tao
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, China
Brian Gregoire
Affiliation:
CNRS, Université de Poitiers, Institut de Chimie des Milieux et Matériaux de Poitiers-IC2MP, 86022 Poitiers, France
Jianxi Zhu
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, China
Hongping He*
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, China
Sabine Petit*
Affiliation:
CNRS, Université de Poitiers, Institut de Chimie des Milieux et Matériaux de Poitiers-IC2MP, 86022 Poitiers, France
*
Corresponding authors: Hongping He and Sabine Petit; Emails: [email protected], [email protected]
Corresponding authors: Hongping He and Sabine Petit; Emails: [email protected], [email protected]

Abstract

Smectite growth is of importance across various fields due to its abundance on the surface of both Earth and Mars. However, the impact of the crystallinity of initial materials on smectite growth processes remains poorly understood. In this study, the kinetic processes of smectite growth were examined via experimental synthesis of trioctahedral Mg-Ni saponites. Mg-Ni saponites were synthesized using mixed precursors, specifically end-member Mg-saponite and Ni-saponite, which exhibit different crystallinities. The crystal chemistry and morphology of samples were analyzed using X-ray diffraction, Fourier-transform infrared spectroscopy, and high-angle annular dark-field scanning transmission electron microscopy. The experimental results converge towards these main conclusions: (i) the formation of Mg-Ni saponite solid solutions are promoted when the precursors are small particles, whereas large-particle precursors limit their own dissolution and do not yield Mg-Ni saponite solid solutions under the experimental conditions; (ii) because Ni exhibits a greater stability within the saponite structure compared to Mg, the Mg-Ni-saponite solid solutions formed more easily from the mixture of Ni-saponite germs and well-crystallized Mg-saponite precursors than from the mixture of Mg-saponite germs and well-crystallized Ni-saponite precursors; (iii) the dissolution extent (DE) of precursor mixtures increases with longer synthesis time, higher synthesis temperature, and larger gap between synthesis temperature of precursors and of samples, and stabilizes once it reaches a certain value. Thus DE can be used to estimate the kinetics of Mg-Ni saponite crystallization from precursor mixtures. These results obtained from the experimental Mg-Ni saponite system are useful for predicting the evolution processes of smectite in natural systems.

Type
Original Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Besselink, R., Stawski, T.M., Freeman, H.M., Hövelmann, J., Tobler, D.J. & Benning, L.G. (2020). Mechanism of saponite crystallization from a rapidly formed amorphous intermediate. Crystal Growth & Design, 20, 33653373.CrossRefGoogle Scholar
Blukis, R., Schindler, M., Couasnon, T., & Benning, L.G. (2022). Mechanism and control of saponite synthesis from a self-assembling nanocrystalline precursor. Langmuir, 38, 76787688.CrossRefGoogle ScholarPubMed
Brigatti, M.F., Galán, E., & Theng, B.K.G. (2013). Chapter 2 – Structure and mineralogy of clay minerals, pp. 2181. In Bergaya, F. and Lagaly, G. (eds), Developments in Clay Science. Elsevier.Google Scholar
Brown, G., & Brindley, G.W. (1980). Crystal Structures of Clay Minerals and their X-ray Identification. Monograph no. 5, Mineralogical Society, London.Google Scholar
Butt, C.R.M., & Cluzel, D. (2013). Nickel laterite ore deposits: weathered serpentinites. Elements, 9, 123128.CrossRefGoogle Scholar
Carter, J., Poulet, F., Murchie, S., & Bibring, J.P. (2013). Automated processing of planetary hyperspectral datasets for the extraction of weak mineral signatures and applications to crism observations of hydrated silicates on mars. Planetary and Space Science, 76, 5367.CrossRefGoogle Scholar
Couty, R., Decarreau, A., & Perruchot, A. (1981). Etude par spectroscopie infrarouge de l’évolution de précipités silico-magnésiens conduisant à la formation de stévensites. Comptes Rendus de l’Académie des Sciences, 292, 12691272.Google Scholar
Decarreau, A. (1980). Cristallogenèse expérimentale des smectites magnésiennes: hectorite, stévensite. Bulletin de minéralogie, 103, 579590.CrossRefGoogle Scholar
Decarreau, A. (1985). Partitioning of divalent transition-elements between octahedral sheets of trioctahedral smectites and water. Geochimica et Cosmochimica Acta, 49, 15371544.CrossRefGoogle Scholar
Ehlmann, B.L., Berger, G., Mangold, N., Michalski, J.R., Catling, D.C., Ruff, S.W., Chassefière, E., Niles, P.B., Chevrier, V., & Poulet, F. (2013). Geochemical consequences of widespread clay mineral formation in mars’ ancient crust. Space Science Reviews, 174, 329364.CrossRefGoogle Scholar
Ehlmann, B.L., & Edwards, C.S. (2014). Mineralogy of the martian surface, pp. 291315. In Jeanloz, R. (Ed), Annual Review of Earth and Planetary Sciences, vol. 42.CrossRefGoogle Scholar
Ferrage, E. (2016). Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations. A review of methodology, applications, and perspectives. Clays and Clay Minerals, 64, 348373.CrossRefGoogle Scholar
Fritsch, E., Juillot, F., Dublet, G., Fonteneau, L., Fandeur, D., Martin, E., Caner, L., Auzende, A.L., Grauby, O., & Beaufort, D. (2016). An alternative model for the formation of hydrous Mg/Ni layer silicates (‘deweylite’/‘garnierite’) in faulted peridotites of New Caledonia: I. Texture and mineralogy of a paragenetic succession of silicate infillings. European Journal of Mineralogy, 28, 295311.CrossRefGoogle Scholar
Gaudin, A., Petit, S., Rose, J., Martin, F., Decarreau, A., Noack, Y., & Borschneck, D. (2004). The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches. Clay Minerals, 39, 453467.CrossRefGoogle Scholar
He, H.P., Li, T., Tao, Q., Chen, T.H., Zhang, D., Zhu, J.X., Yuan, P., & Zhu, R.L. (2014). Aluminum ion occupancy in the structure of synthetic saponites: effect on crystallinity. American Mineralogist, 99, 109116.CrossRefGoogle Scholar
Hover, V.C., Walter, L.M., Peacor, D.R., & Martini, A.M. (1999). Mg-smectite authigenesis in a marine evaporative environment, Salina Ometepec, Baja California. Clays and Clay Minerals, 47, 252268.CrossRefGoogle Scholar
Iiyama, J.T., & Roy, R. (1963). Unusually stable saponite in the system Na2O-MgO-Al2O3-SiO2. Clay Minerals Bulletin, 5, 161171.CrossRefGoogle Scholar
Kloprogge, J.T., Komarneni, S., & Amonette, J.E. (1999). Synthesis of smectite clay minerals: a critical review. Clays and Clay Minerals, 47, 529554.CrossRefGoogle Scholar
Mano, E.S., Caner, L., Petit, S., Chaves, A.P., & Mexias, A.S. (2019). Ni-smectitic ore behaviour during the caron process. Hydrometallurgy, 186, 200209.CrossRefGoogle Scholar
McHale, J.M., Auroux, A., Perrotta, A.J., & Navrotsky, A. (1997). Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science, 277, 788791.CrossRefGoogle Scholar
Meyer, S., Bennici, S., Vaulot, C., Rigolet, S., & Dzene, L. (2020). Influence of the precursor and the temperature of synthesis on the structure of saponite. Clays and Clay Minerals, 68, 544552.CrossRefGoogle Scholar
Michalski, J.R., Cuadros, J., Bishop, J.L., Dyar, M.D., Dekov, V., & Fiore, S. (2015). Constraints on the crystal-chemistry of fe/mg-rich smectitic clays on mars and links to global alteration trends. Earth and Planetary Science Letters, 427, 215225.CrossRefGoogle Scholar
Navrotsky, A., Mazeina, L., & Majzlan, J. (2008). Size-driven structural and thermodynamic complexity in iron oxides. Science, 319, 16351638.CrossRefGoogle ScholarPubMed
Pelletier, M., Michot, L.J., Barres, O., Humbert, B., Petit, S., & Robert, J.L. (1999). Influence of KBr conditioning on the infrared hydroxyl-stretching region of saponites. Clay Minerals, 34, 439445.CrossRefGoogle Scholar
Petit, S., Baron, F., & Decarreau, A. (2017). Synthesis of nontronite and other Fe-rich smectites: a critical review. Clay Minerals, 52, 469483.CrossRefGoogle Scholar
Petit, S., & Madejová, J. (2013). Chapter 2.7 – Fourier transform infrared spectroscopy, pp. 213231. In Bergaya, F. and Lagaly, G. (eds), Developments in Clay Science. Elsevier.Google Scholar
Petit, S., Martin, F., Wiewiora, A., De Parseval, P., & Decarreau, A. (2004). Crystal-chemistry of talc: a near infrared (NIR) spectroscopy study. American Mineralogist, 89, 319326.CrossRefGoogle Scholar
Putnis, A. (2002). Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689708.CrossRefGoogle Scholar
Schoonheydt, R.A. (2002). Smectite-type clay minerals as nanomaterials. Clays and Clay Minerals, 50, 411420.CrossRefGoogle Scholar
Tang, R.K., Wang, L.J., & Nancollas, G.H. (2004). Size-effects in the dissolution of hydroxyapatite: an understanding of biological demineralization. Journal of Materials Chemistry, 14, 23412346.CrossRefGoogle Scholar
Trolard, F., & Tardy, Y. (1987). The stabilities of gibbsite, boehmite, aluminous goethites and aluminous hematites in bauxites, ferricretes and laterites as a function of water activity, temperature and particle-size. Geochimica et Cosmochimica Acta, 51, 945957.CrossRefGoogle Scholar
Warren, C.J., Dudas, M.J., & Abboud, S.A. (1992). Effects of acidification on the chemical-composition and layer charge of smectite from calcareous till. Clays and Clay Minerals, 40, 731739.CrossRefGoogle Scholar
Yamada, H., Yoshioka, K., Tamura, K., Fujii, K., & Nakazawa, H. (1999). Compositional gap in dioctahedral-trioctahedral smectite system: Beidellite-saponite pseudo-binary join. Clays and Clay Minerals, 47, 803810.CrossRefGoogle Scholar
Zhang, C., He, H., Qin, X., Decarreau, A., Baron, F., Tao, Q., Zhu, J., Xi, Y., & Petit, S. (2022) The growth process of saponite: a study based on particle size distributions and morphological evolution. Applied Clay Science, 221, 106463.CrossRefGoogle Scholar
Zhang, C.Q., He, H.P., Petit, S., Baron, F., Tao, Q., Gregoire, B., Zhu, J.X., Yang, Y.P., Ji, S.C., & Li, S.Y. (2021). The evolution of saponite: an experimental study based on crystal chemistry and crystal growth. American Mineralogist, 106, 909921.CrossRefGoogle Scholar
Zhang, C.Q., Petit, S., He, H.P., Villiéras, F., Razafitianamaharavo, A., Baron, F., Tao, Q., & Zhu, J.X. (2020) Crystal growth of smectite: a study based on the change in crystal chemistry and morphology of saponites with synthesis time. ACS Earth and Space Chemistry, 4, 1423.CrossRefGoogle Scholar
Zhang, D., Zhou, C.H., Lin, C.X., Tong, D.S., & Yu, W.H. (2010). Synthesis of clay minerals. Applied Clay Science, 50, 111.CrossRefGoogle Scholar