Hostname: page-component-f554764f5-68cz6 Total loading time: 0 Render date: 2025-04-20T10:29:12.854Z Has data issue: false hasContentIssue false

Optimal design via polynomial Euler function for UAV applications

Published online by Cambridge University Press:  13 September 2024

Z. Y. Chen
Affiliation:
School of Science, Guangdong University of Petrochem Technology, Maoming 525000, Guangdong, China
Yahui Meng*
Affiliation:
School of Science, Guangdong University of Petrochem Technology, Maoming 525000, Guangdong, China
Ruei-Yuan Wang
Affiliation:
School of Science, Guangdong University of Petrochem Technology, Maoming 525000, Guangdong, China
Timothy Chen*
Affiliation:
Division of Engineering and Applied Science, Caltech, Pasadena, CA 91125, USA
*
*Corresponding authors: Timothy Chen; Email: [email protected], Yahui Meng; Email: [email protected]
*Corresponding authors: Timothy Chen; Email: [email protected], Yahui Meng; Email: [email protected]

Abstract

Unmanned aerial vehicles (UAVs) have recently been widely applied in a comprehensive realm. By enhancing computer photography and artificial intelligence, UAVs can automatically discriminate against environmental objectives and detect events that occur in the real scene. The application of collaborative UAVs will offer diverse interpretations which support a multiperspective view of the scene. Due to the diverse interpretations of UAVs usually deviating, UAVs require a consensus interpretation for the scenario. This study presents an original consensus-based method to pilot multi-UAV systems for achieving consensus on their observation as well as constructing a group situation-based depiction of the scenario. Taylor series are used to describe the fuzzy nonlinear plant and derive the stability analysis using polynomial functions, which have the representations $V(x )={m_{\textrm{1} \le l \le N}}({{V_\textrm{l}}(x )} )$ and ${V_l}(x )={x^T}{P_l}(x )x$. Due to the fact that the ${\dot{P}_l}(x )$ in ${\dot{V}_l}(x )={\dot{x}^T}{P_l}(x )x + {x^T}{\dot{P}_l}(x )x + {x^T}{P_l}(x )\dot{x}$ will yield intricate terms to ensure a stability criterion, we aim to avoid these kinds of issues by proposing a polynomial homogeneous framework and using Euler's functions for homogeneous systems. First, this method permits each UAV to establish high-level conditions from the probed events via a fuzzy-based aggregation event. The evaluated consensus indicates how suitable is the scenario collective interpretation for every UAV perspective.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bai, X., He, Y. and Xu, M. (2021). Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form. IEEE Transactions on Aerospace and Electronic Systems, 57(5), 32793295. doi:10.1109/TAES.2021.3074204CrossRefGoogle Scholar
Cao, B., Li, M., Liu, X., Zhao, J., Cao, W. and Lv, Z. (2021). Many-objective deployment optimization for a drone-assisted camera network. IEEE Transactions on Network Science and Engineering, 8(4), 27562764. doi:10.1109/TNSE.2021.3057915CrossRefGoogle Scholar
Chen, B., Hu, J., Zhao, Y. and Ghosh, B. K. (2022a). Finite-time observer based tracking control of uncertain heterogeneous underwater vehicles using adaptive sliding mode approach. Neurocomputing, 481, 322332. doi:10.1016/j.neucom.2022.01.038CrossRefGoogle Scholar
Chen, J., Wang, Q., Peng, W., Xu, H., Li, X. and Xu, W. (2022b). Disparity-based multiscale fusion network for transportation detection. IEEE Transactions on Intelligent Transportation Systems, 23(10), 1885518863. doi:10.1109/TITS.2022.3161977CrossRefGoogle Scholar
Chen, J., Wang, Q., Cheng, H. H., Peng, W. and Xu, W. (2022c). A review of vision-based traffic semantic understanding in ITSs. IEEE Transactions on Intelligent Transportation Systems, 23(11), 1995419979. doi:10.1109/TITS.2022.3182410CrossRefGoogle Scholar
Chen, J., Xu, M., Xu, W., Li, D., Peng, W. and Xu, H. (2023). A flow feedback traffic prediction based on visual quantified features. IEEE Transactions on Intelligent Transportation Systems, 24(9), 1006710075. doi:10.1109/TITS.2023.3269794CrossRefGoogle Scholar
Chen, J., Wang, X., Fang, Z., Jiang, C., Gao, M. and Xu, Y. (2024). A real-time spoofing detection method using three low-cost antennas in satellite navigation. Electronics, 13(6), 1134. https://doi.org/10.3390/electronics13061134CrossRefGoogle Scholar
Dai, M., Luo, L., Ren, J., Yu, H. and Sun, G. (2022). PSACCF: Prioritized online slice admission control considering fairness in 5G/B5G networks. IEEE Transactions on Network Science and Engineering, 9(6), 41014114. doi:10.1109/TNSE.2022.3195862CrossRefGoogle Scholar
Dai, X., Xiao, Z., Jiang, H. and Lui, J. C. S. (2023). UAV-assisted task offloading in vehicular edge computing networks. IEEE Transactions on Mobile Computing. doi:10.1109/TMC.2023.3259394Google Scholar
Di, Y., Li, R., Tian, H., Guo, J., Shi, B., Wang, Z., Yan, K. and Liu, Y. (2023). A maneuvering target tracking based on fastIMM-extended Viterbi algorithm. Neural Computing and Applications. doi:10.1007/s00521-023-09039-1Google Scholar
Feng, J., Wang, W. and Zeng, H. (2024). Integral sliding mode control for a class of nonlinear multi-agent systems with multiple time-varying delays. IEEE Access, 12, 1051210520. doi:10.1109/ACCESS.2024.3354030CrossRefGoogle Scholar
Guo, C. and Hu, J. (2023). Time base generator based practical predefined-time stabilization of high-order systems with unknown disturbance. IEEE Transactions on Circuits and Systems II: Express Briefs. doi:10.1109/TCSII.2023.3242856Google Scholar
Guo, J., Ding, B., Wang, Y. and Han, Y. (2023). Co-optimization for hydrodynamic lubrication and leakage of V-shape textured bearings via linear weighting summation. Physica Scripta, 98(12), 125218. doi:10.1088/1402-4896/ad07beCrossRefGoogle Scholar
Hou, X., Xin, L., Fu, Y., Na, Z., Gao, G., Liu, Y., Xu, Q., Zhao, P., Yan, G., Su, Y., Cao, K., Li, L. and Chen, T. (2023a). A self-powered biomimetic mouse whisker sensor (BMWS) aiming at terrestrial and space objects perception. Nano Energy, 118, 109034. https://doi.org/10.1016/j.nanoen.2023.109034CrossRefGoogle Scholar
Hou, X., Zhang, L., Su, Y., Gao, G., Liu, Y., Na, Z., Xu, Q.Z., Ding, T., Xiao, L., Li, L. and Chen, T. (2023b). A space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identification. Nano Energy, 105, 108013. doi:10.1016/j.nanoen.2022.108013CrossRefGoogle Scholar
Jiang, H., Wang, M., Zhao, P., Xiao, Z. and Dustdar, S. (2021). A utility-aware general framework with quantifiable privacy preservation for destination prediction in LBSs. IEEE/ACM Transaction on Networking, 29(5), 22282241. doi: 10.1109/TNET.2021.3084251CrossRefGoogle Scholar
Li, D. and Zakarya, M. (2022). Machine learning based preschool education quality assessment system. Mobile Information Systems, 2022, 2862518. doi:10.1155/2022/2862518CrossRefGoogle Scholar
Li, L. and Yao, L. (2023). Fault tolerant control of fuzzy stochastic distribution systems with packet dropout and time delay. IEEE Transactions on Automation Science and Engineering. doi:10.1109/TASE.2023.3266065Google Scholar
Li, D., Dai, X., Wang, J., Xu, Q., Wang, Y., Fu, T., Hafez, A. and Grant, J. (2022a). Evaluation of college students’ classroom learning effect based on the neural network algorithm. Mobile Information Systems, 2022, 7772620. doi:10.1155/2022/7772620CrossRefGoogle Scholar
Li, D., Hu, R., Lin, Z. and Li, Q. (2022b). Vocational education platform based on Block Chain and IoT Technology. Computational Intelligence and Neuroscience, 2022, 5856229. doi:10.1155/2022/5856229Google ScholarPubMed
Li, K., Ji, L., Yang, S., Li, H. and Liao, X. (2022c). Couple-group consensus of cooperative–competitive heterogeneous multiagent systems: A fully distributed event-triggered and pinning control method. IEEE Transactions on Cybernetics, 52(6), 49074915. doi:10.1109/TCYB.2020.3024551CrossRefGoogle ScholarPubMed
Liu, L., Zhang, S., Zhang, L., Pan, G. and Yu, J. (2023). Multi-UUV maneuvering counter-game for dynamic target scenario Based on fractional-order recurrent neural network. IEEE Transactions on Cybernetics, 53(6), 40154028. doi:10.1109/TCYB.2022.3225106CrossRefGoogle ScholarPubMed
Liu, W., Zhong, J., Liang, P., Guo, J., Zhao, H. and Zhang, J. (2024). Towards explainable traffic signal control for urban networks through genetic programming. Swarm and Evolutionary Computation, 88, 101588. https://doi.org/10.1016/j.swevo.2024.101588CrossRefGoogle Scholar
Lu, J. and Osorio, C. (2018). A probabilistic traffic-theoretic network loading model suitable for large-scale network analysis. Transportation Science, 52(6), 15091530. doi:10.1287/trsc.2017.0804CrossRefGoogle Scholar
Luo, Y., Liu, X., Chen, F., Zhang, H. and Xiao, X. (2023). Numerical simulation on crack-inclusion interaction for rib-to-deck welded joints in orthotropic steel deck. Metals, 13(8), 1402. doi:10.3390/met13081402CrossRefGoogle Scholar
Lyu, T., Xu, H., Zhang, L. and Han, Z. (2023). Source selection and resource allocation in wireless powered relay networks: An adaptive dynamic programming based approach. IEEE Internet of Things Journal. doi:10.1109/JIOT.2023.3321673Google Scholar
Ma, J. and Hu, J. (2022). Safe consensus control of cooperative-competitive multi-agent systems via differential privacy. Kybernetika, 58(3), 426439. doi:10.14736/kyb-2022-3-0426Google Scholar
Ma, B., Liu, Z., Dang, Q., Zhao, W., Wang, J., Cheng, Y. and Yuan, Z. (2023a). Deep reinforcement learning of UAV tracking control under wind disturbances environments. IEEE Transactions on Instrumentation and Measurement, 72. doi:10.1109/TIM.2023.3265741Google Scholar
Ma, X., Dong, Z., Quan, W., Dong, Y. and Tan, Y. (2023b). Real-time assessment of asphalt pavement moduli and traffic loads using monitoring data from built-in sensors: Optimal sensor placement and identification algorithm. Mechanical Systems and Signal Processing, 187, 109930. doi:10.1016/j.ymssp.2022.10993CrossRefGoogle Scholar
Mi, C., Liu, Y., Zhang, Y., Wang, J., Feng, Y. and Zhang, Z. (2023). A vision-based displacement measurement system for foundation pit. IEEE Transactions on Instrumentation and Measurement, 72. doi:10.1109/TIM.2023.3311069CrossRefGoogle Scholar
Qu, J., Mao, B., Li, Z., Xu, Y., Zhou, K., Cao, X., Fan, Q., Xu, M., Liang, B., Liu, H. and Wang, X. (2023a). Recent progress in advanced tactile sensing technologies for soft grippers. Advanced Functional Materials, 33(41), 2306249. doi:10.1002/adfm.202306249CrossRefGoogle Scholar
Qu, J., Yuan, Q., Li, Z., Wang, Z., Xu, F., Fan, Q., Zhang, M., Qian, X., Wang, X., Wang, X. and Xu, M. (2023b). All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic grasping. Nano Energy, 111, 108387. doi:10.1016/j.nanoen.2023.108387CrossRefGoogle Scholar
Shi, Y., Lan, Q., Lan, X., Wu, J., Yang, T. and Wang, B. (2023a). Robust optimization design of a flying wing using adjoint and uncertainty-based aerodynamic optimization approach. Structural and Multidisciplinary Optimization, 66(5), 110. doi:10.1007/s00158-023-03559-zCrossRefGoogle Scholar
Shi, Y., Song, C., Chen, Y., Rao, H. and Yang, T. (2023b). Complex standard eigenvalue problem derivative computation for Laminar-Turbulent transition prediction. AIAA Journal, 61(8), 34043418. doi:10.2514/1.J062212CrossRefGoogle Scholar
Song, F., Liu, Y., Shen, D., Li, L. and Tan, J. (2022). Learning control for motion coordination in water scanners: Toward gain adaptation. IEEE Transactions on Industrial Electronics, 69(12), 1342813438. doi:10.1109/TIE.2022.3142428CrossRefGoogle Scholar
Sun, G., Xu, Z., Yu, H., Chen, X., Chang, V. and Vasilakos, A. V. (2020). Low-latency and resource-efficient service function chaining orchestration in network function virtualization. IEEE Internet of Things Journal, 7(7), 57605772. doi:10.1109/JIOT.2019.2937110CrossRefGoogle Scholar
Sun, G., Xu, Z., Yu, H. and Chang, V. (2021). Dynamic network function provisioning to enable network in box for industrial applications. IEEE Transactions on Industrial Informatics, 17(10), 71557164. doi:10.1109/TII.2020.3042872CrossRefGoogle Scholar
Sun, G., Sheng, L., Luo, L. and Yu, H. (2022). Game theoretic approach for multipriority data transmission in 5G vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 23(12), 2467224685. doi:10.1109/TITS.2022.3198046CrossRefGoogle Scholar
Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its applications to modelling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116132.CrossRefGoogle Scholar
Tan, J., Zhang, K., Li, B. and Wu, A. (2023). Event-triggered sliding mode control for spacecraft reorientation with multiple attitude constraints. IEEE Transactions on Aerospace and Electronic Systems, 59(5), 60316043. doi:10.1109/TAES.2023.3270391Google Scholar
Tian, J., Wang, B., Guo, R., Wang, Z., Cao, K. and Wang, X. (2022). Adversarial attacks and defenses for deep-learning-based unmanned aerial vehicles. IEEE Internet of Things Journal, 9(22), 2239922409. doi:10.1109/JIOT.2021.3111024CrossRefGoogle Scholar
Wang, D., Wang, X., Jin, M. L., He, P. and Zhang, S. (2022). Molecular level manipulation of charge density for solid-liquid TENG system by proton irradiation. Nano Energy, 103, 107819. https://doi.org/10.1016/j.nanoen.2022.107819CrossRefGoogle Scholar
Wang, Y., Xu, J., Qiao, L., Zhang, Y. and Bai, J. (2023). Improved amplification factor transport transition model for transonic boundary layers. AIAA Journal, 61(9), 38663882. https://doi.org/10.2514/1.J062341CrossRefGoogle Scholar
Wang, F., Ma, M. and Zhang, X. (2024a). Study on a portable electrode used to detect the fatigue of tower crane drivers in real construction environment. IEEE Transactions on Instrumentation and Measurement, 73. doi:10.1109/TIM.2024.3353274Google Scholar
Wang, W., Liang, J., Liu, M., Ding, L. and Zeng, H. (2024b). Novel robust stability criteria for Lur’e Systems with time-varying delay. Mathematics, 12(4), 583. https://doi.org/10.3390/math12040583CrossRefGoogle Scholar
Wu, H., Jin, S. and Yue, W. (2022). Pricing policy for a dynamic Spectrum allocation scheme with batch requests and impatient packets in cognitive radio networks. Journal of Systems Science and Systems Engineering, 31(2), 133149. doi:10.1007/s11518-022-5521-0CrossRefGoogle Scholar
Xiao, Z., Fang, H., Jiang, H., Bai, J., Havyarimana, V., Chen, H. and Jiao, L. (2023). Understanding private car aggregation effect via spatio-temporal analysis of trajectory data. IEEE Transactions on Cybernetics, 53(4), 23462357. doi:10.1109/TCYB.2021.3117705CrossRefGoogle ScholarPubMed
Xu, J., Park, S. H., Zhang, X. and Hu, J. (2022). The improvement of road driving safety guided by visual inattentional blindness. IEEE Transactions on Intelligent Transportation Systems, 23(6), 49724981. https://doi.org/10.1109/TITS.2020.3044927CrossRefGoogle Scholar
Yang, H., Li, Z. and Qi, Y. (2023). Predicting traffic propagation flow in urban road network with multi-graph convolutional network. Complex & Intelligent Systems. doi:10.1007/s40747-023-01099-zGoogle Scholar
Yang, M., Han, W., Song, Y., Wang, Y. and Yang, S. (2024). Data-model fusion driven intelligent rapid response design of underwater gliders. Advanced Engineering Informatics, 61, 102569. https://doi.org/10.1016/j.aei.2024.102569CrossRefGoogle Scholar
Yin, Y., Guo, Y., Su, Q. and Wang, Z. (2022). Task allocation of multiple unmanned aerial vehicles based on deep transfer reinforcement learning. Drones, 6(8), 215. doi:10.3390/drones6080215CrossRefGoogle Scholar
Yin, Y., Zhang, R. and Su, Q. (2023). Threat assessment of aerial targets based on improved GRA-TOPSIS method and three-way decisions. Mathematical Biosciences and Engineering, 20(7), 1325013266. doi:10.3934/mbe.2023591CrossRefGoogle ScholarPubMed
Zhang, C., Zhou, L. and Li, Y. (2023a). Pareto optimal reconfiguration planning and distributed parallel motion control of Mobile modular robots. IEEE Transactions on Industrial Electronics. doi:10.1109/TIE.2023.3321997Google Scholar
Zhang, Y., Li, S., Wang, S., Wang, X. and Duan, H. (2023b). Distributed bearing-based formation maneuver control of fixed-wing UAVs by finite-time orientation estimation. Aerospace Science and Technology, 136, 108241. doi:10.1016/j.ast.2023.108241CrossRefGoogle Scholar
Zhang, H., Xu, Y., Luo, R. and Mao, Y. (2023c). Fast GNSS acquisition algorithm based on SFFT with high noise immunity. China Communications, 20(5), 7083. doi:10.23919/JCC.2023.00.006CrossRefGoogle Scholar
Zhang, X., Wang, Y., Yuan, X., Shen, Y. and Lu, Z. (2023d). Adaptive dynamic surface control with disturbance observers for battery/supercapacitor-based hybrid energy sources in electric vehicles. IEEE Transactions on Transportation Electrification, 9(4), 51655181. doi:10.1109/TTE.2022.3194034CrossRefGoogle Scholar
Zheng, C., An, Y., Wang, Z., Wu, H., Qin, X., Eynard, B. and Zhang, Y. (2022). Hybrid offline programming method for robotic welding systems. Robotics and Computer-Integrated Manufacturing, 73, 102238. doi:10.1016/j.rcim.2021.102238CrossRefGoogle Scholar
Zheng, C., An, Y., Wang, Z., Qin, X., Eynard, B., Bricogne, M., Le Duigou, J. and Zhang, Y. (2023a). Knowledge-based engineering approach for defining robotic manufacturing system architectures. International Journal of Production Research, 61(5), 14361454. doi:10.1080/00207543.2022.2037025CrossRefGoogle Scholar
Zheng, W., Gong, G., Tian, J., Lu, S., Wang, R., Yin, Z., Li, X. and Yin, L. (2023b). Design of a modified transformer architecture based on relative position coding. International Journal of Computational Intelligence Systems, 16(1), 168. doi:10.1007/s44196-023-00345-zCrossRefGoogle Scholar