No CrossRef data available.
Article contents
AFFINE CONVOLUTIONS, RAMANUJAN–FOURIER EXPANSIONS AND SOPHIE GERMAIN PRIMES
Published online by Cambridge University Press: 25 October 2022
Abstract
For a fixed integer h, the standard orthogonality relations for Ramanujan sums $c_r(n)$ give an asymptotic formula for the shifted convolution
$\sum _{n\le N} c_q(n)c_r(n+h)$. We prove a generalised formula for affine convolutions
$\sum _{n\le N} c_q(n)c_r(kn+h)$. This allows us to study affine convolutions
$\sum _{n\le N} f(n)g(kn+h)$ of arithmetical functions
$f,g$ admitting a suitable Ramanujan–Fourier expansion. As an application, we give a heuristic justification of the Hardy–Littlewood conjectural asymptotic formula for counting Sophie Germain primes.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230929052428826-0083:S0004972722001137:S0004972722001137_inline102.png?pub-status=live)