Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T10:03:09.108Z Has data issue: false hasContentIssue false

Redox Treatment of an Fe/Al Pillared Montmorillonite. A Mössbauer Study

Published online by Cambridge University Press:  28 February 2024

T. Bakas*
Affiliation:
Physics Department, The University of Ioannina, GR 451 10 Ioannina, Greece
A. Moukarika
Affiliation:
Physics Department, The University of Ioannina, GR 451 10 Ioannina, Greece
V. Papaefthymiou
Affiliation:
Physics Department, The University of Ioannina, GR 451 10 Ioannina, Greece
A. Ladavos
Affiliation:
Chemistry Department, The University of Ioannina, GR 451 10 Ioannina, Greece
*
*Address correspondence to T. Bakas.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pillared structures with an interlayer opening of ∼0.3 nm were obtained after successive heat treatments of the PILC precursor in reducing and oxidizing conditions. This precursor was prepared by reacting a Na+-montmorillonite with an intercalant containing Al and Fe oxo-hydroxides (Al/Fe = 1). Powder X-ray diffraction, elemental analysis, 57Fe Mössbauer spectroscopy, catalytic activity measurements and surface area data were used to characterize the samples. On the basis of Mössbauer spectra taken at temperatures between 4.2 and 300 K, it is deduced that oxidizing steps produce Al substituted maghemite which converts into Al substituted magnetite upon reducing heat treatment. Firing the precursor in oxidizing atmosphere forms pillars of few nm in diameter. However, heating under reducing conditions yields pillars of smaller diameter. This later behaviour is maintained even after reheating the material in oxidizing atmosphere. From the temperature dependence of Mössbauer spectra it is deduced that the diameter of the Fe oxide particles in the pillars is smaller than 10 nm.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

References

Annersten, H., and Hafner, S. S., (1973) Vacancy distribution in synthetic spinels of the series Fe3O4-γ-Fe2O3: Z Kristallogr. 137: 321340.Google Scholar
Bartley, G. J. J., (1988) Zirconium pillared clays: Catal. Today 2: 233241.CrossRefGoogle Scholar
Bergaya, F., and Barrault, J., (1990) Mixed Al-Fe pillared laponites: Preparation characterization and their catalytic properties in syngas conversion: in Pillared Layered Structures: Current Trends and Applications: I. V. Mitchell, ed., Commission of European Communities, Elsevier Applied Science, London, 167184.Google Scholar
Bergaya, F., Hassoun, N., Gatineau, L., and Barrault, J., (1991) Mixed Al-Fe pillared laponites: Preparation, characterization and catalytic properties in syngas conversion: in Preparation of Catalysts V: G. Poncelet, P. A. Jacobs, P. Grange, and B. Delmon, eds., Elsevier Science Publishers B. V., Amsterdam, 329337.Google Scholar
Bergaya, F., Hassoun, N., Barrault, J., and Gatineau, L., (1993) Pillaring of synthetic hectorite by mixed [Al13–xFex] pillars: Clay Miner. 28: 109122.CrossRefGoogle Scholar
Braddell, O., Barklie, R. C., Doff, D. H., Gangas, N. H. J., and McKimm, A., (1987) EPR of Cu2+ ions in pillared clay: Zeit. Phys. Chem. 151: 157164.CrossRefGoogle Scholar
Brindley, G. W., and Sempels, R. E., (1977) Preparation and properties of some hydroxy-aluminiun beidellites: Clay Miner. 12: 229236.CrossRefGoogle Scholar
Coey, J. M. D., (1980) At. Energy Rev. 18: no. 1, 73124.Google Scholar
Christiano, S. P., and Pinnavaia, T. J., (1986) Intercalation in montmorillonite of molybdenum cations containing the Mo6Cl8 cluster core: J. Solid State Chem. 64: 232239.CrossRefGoogle Scholar
Christiano, S. P., Wang, J., and Pinnavaia, T. J., (1985) Intercalation of Niobium and Tantalum M6Cl12n+ cluster cations in montmorillonite: A new route to pillared clays: Inorg. Chem. 24: 12221227.CrossRefGoogle Scholar
De Grave, E., Bowen, L. H., and Weed, S. B., (1982) Mossbauer study of Aluminum-substituted hematites: J. Mag. Mag. Mat. 27: 98108.CrossRefGoogle Scholar
De Villiers, J. M., and van Rooyen, T. H., (1967) Solid solution formation of lepidocrocite-boehmite and its occurrence in soil: Clay Miner. 7: 229235.CrossRefGoogle Scholar
Doff, D. H., Gangas, N. H. J., Allan, J. E. M., and Coey, J. M. D., (1988) Preparation and characterization of iron oxide pillared montmorillonite: Clay Miner. 23: 367377.CrossRefGoogle Scholar
Dormann, J. L., Seqqat, M., Fiorani, D., Nogues, M., Soubeyroux, J. L., Bhargava, S. C., and Renaudin, P., (1990) Mössbauer studies of FeAl2O4 and FeIn2S4 spin glass spinels: Hyper. Inter. 54: 503508.CrossRefGoogle Scholar
Endo, T., Mortland, M. M., and Pinnavaia, T. J., (1980) Intercalation of silica in smectites: Clays & Clay Minerals 28: 105110.CrossRefGoogle Scholar
Fripiat, J. J., (1986) Internal surface of clays and constrained chemical reactions: Clays & Clay Minerals 34: 501506.CrossRefGoogle Scholar
Gangas, N. H. J., van Wonterghem, J., Morup, S., and Koch, C. J. W., (1985) Magnetic bridging in nontronite by intercalated iron: J. Phys. C 18: L1011-L1015.CrossRefGoogle Scholar
Gangas, N. H., Bakas, T., Moukarika, A., Petrides, D., and Simopoulos, A., (1987) Magnetic ordering in nontronite pillared with Al-polyoxo cations: NATO ASI Chemical Physics of Intercalation, Castera-Verduzan, France.CrossRefGoogle Scholar
Harsh, J. B., and Doner, H. E., (1984) Specific adsorption of copper on an hydroxy-aluminium-montmorillonite complex: Soil Sci. Am. Proc. 48: 10341039.CrossRefGoogle Scholar
Karydas, A. G., and Paradellis, T., (1990) Coal XRF analysis using a proton induced copper X-ray beam: J. Coal Qual. 9: no. 2, 3943.Google Scholar
Lahav, N., Shani, U., and Shabtai, J., (1978) Cross-linked smectites. I—Synthesis and properties of hydroxy-aluminum-montmorillonite: Clays & Clay Minerals 26: 107115.CrossRefGoogle Scholar
Longworth, G., (1984) Spectral data reduction and refinement: in Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 1, Long, G. J., ed., Plenum Press, New York and London, 4356.CrossRefGoogle Scholar
Lee Woo, Y., Raythatha, R. H., and Tatarchuk, B. J., (1989) Pillared-Clay Catalysts Containing Mixed-Metal Complexes: J. Catal. 115: 159179.CrossRefGoogle Scholar
Mitchell, I. V., (1990) ed. Pillared Layered Structures. Current Trends and Applications: Commission of European Communities, Elsevier Applied Science, London, 209217.Google Scholar
Morup, S., (1987) Mössbauer effect studies of microcrystalline materials: in Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, Long, G. J., ed., Long, Plenum Press, New York and London, 89119.Google Scholar
Morup, S., Dumesic, J. A., and Topsoe, H., (1980) Magnetic microcrystals: in Applications of Mössbauer Spectroscopy, Vol. 2, Cohen, R., ed., Academic Press, New York.Google Scholar
Murad, E., and Johnston, H. J., (1987) Iron oxides and hydroxides: in Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, Long, G. J., ed., Plenum Press, New York and London. 507574.Google Scholar
Occelli, M. L., (1983) Catalytic cracking with an interlayered clay. A two-dimensional molecular sieve: Ind. Eng. Chem. Prod. Res. Dev. 22: 553559.CrossRefGoogle Scholar
Petridis, D., Bakas, T., Simopoulos, A., and Gangas, N. H., (1989) Pillaring of montmorillonite by organotin cationic complexes: Inorg. Chem. 28: 24392443.CrossRefGoogle Scholar
Pinnavaia, T. J., (1983) Intercalated clay catalysts: Science 220: 365371.CrossRefGoogle ScholarPubMed
Pinnavaia, T. J., Rainey, V., Tzou, Ming-Shin, and White, J. W., (1984) Characterization of pillared clays by neutron scattering: J. Mol. Catal. 27: 213224.CrossRefGoogle Scholar
Plee, D., Borg, F., Gatineau, L., and Fripiat, J. J., (1985) High resolution solid state 27Al and 29Si nuclear magnetic resonance study of pillared clays: J. Amer. Chem. Soc. 107: 23622369.CrossRefGoogle Scholar
Rozenson, I., and Heller-Kallai, L., (1976) Reduction and oxidation of Fe3+ in dioctahedral smectites — 1: Reduction with hydrazine and dithionite: Clays & Clay Minerals 24: 271282.CrossRefGoogle Scholar
Savidou, A., and Paradellis, T., (1990) Determination of light elements in a natural coal sample by PIGE spectroscopy: J. Coal Qual. 9: no. 2, 4547.Google Scholar
Simopoulos, A., Kostikas, A., Sigalas, I., Gangas, N. H., and Moukarika, A., (1975) Mössbauer study of transformations induced in clays by firing: Clays & Clay Minerals 23: 393399.CrossRefGoogle Scholar
Sterte, J., (1986) Synthesis and properties of titanium oxide cross-linked montmorillonite: Clays & Clay Minerals 34: 658664.CrossRefGoogle Scholar
Takada, T., Kiyama, M., Bando, Y., Nakamura, T., Shiga, M., Shinjo, T., Yamamoto, N., Endoh, Y., and Takaki, H., (1964) Mössbauer study of α-, β-, and γ-FeOOH: J. Phys. Soc. Japan 19: 1744.CrossRefGoogle Scholar
Terashima, T., and Bando, Y., (1985) Magnetism of ultrathin Fe3O4 films: J. Phys. Soc. Japan 54: no. 10, 39203924.CrossRefGoogle Scholar
Tzou, M. S., and Pinnavaia, T. J., (1988) Chromia pillared clays: Catal. Today 2: 243259.CrossRefGoogle Scholar
Tillak, D., Tennakoon, B., Jones, W., and Thomas, J. M., (1986) Structural aspects of metal-oxide-pillared sheet silicates: J. Chem. Soc., Faraday Trans. I 82: 30813095.Google Scholar
Vaughan, D. E. W., (1988) Recent developments in pillared interlayered clays: in Perspectives in Molecular Sieve Science, ACS Symposium Series 368: 308323.CrossRefGoogle Scholar
Vaughan, D. E. W., and Lussier, R. J., (1980) Preparation of molecular sieves based on pillared interlayered clays: in Proc. 5th International Conference on Zeolites, Naples, Rees, L. V. C., ed., Heyden, London, 94101.Google Scholar
Voorhoeve, R. J. H., and Trimble, L. E., (1975) Reduction of nitric oxide with carbon monoxide and hydrogen over Ruthenium catalysts: J. Catal. 38: 8091.CrossRefGoogle Scholar
Yamanaka, S., Doi, T., Sako, S., and Hattori, M., (1984) High surface area solids obtained by intercalation of iron oxide pillars in montmorillonite: Mat. Res. Bul. 19: 161168.CrossRefGoogle Scholar