No CrossRef data available.
Article contents
LINEAR INDEPENDENCE OF VALUES OF THE q-EXPONENTIAL AND RELATED FUNCTIONS
Published online by Cambridge University Press: 23 October 2023
Abstract
We establish the linear independence of values of the q-analogue of the exponential function and its derivatives at specified algebraic arguments, when q is a Pisot–Vijayaraghavan number. We also deduce similar results for cognate functions, such as the Tschakaloff function and certain generalised q-series.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.
Footnotes
Research of the first and the third authors was partially supported by the INSPIRE Faculty Fellowship.
References
Amou, M., Matala-Aho, T. and Väänänen, K., ‘On Siegel–Shidlovskii’s theory for
$q$
-difference equations’, Acta Arith. 127 (2007), 309–335.CrossRefGoogle Scholar

Corvaja, P. and Zannier, U., Applications of Diophantine Approximation to Integral Points and Transcendence, Cambridge Tracts in Mathematics, 212 (Cambridge University Press, Cambridge, 2018).CrossRefGoogle Scholar
Duverney, D., ‘Irrationalité de la somme des inverses de la suite de Fibonacci’, Elem. Math. 52 (1997), 31–36.CrossRefGoogle Scholar
Erdős, P., ‘On arithmetical properties of Lambert series’, J. Indian Math. Soc. (N.S.) 12 (1948), 63–66.Google Scholar
Gasper, G. and Rahman, M., Basic Hypergeometric Series, 2nd edn, Encyclopedia of Mathematics and Its Applications, 96 (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
Krattenthaler, C., Rivoal, T. and Zudilin, W., ‘Series hypergeometriques basiques,
$q$
-analogues de valeurs de la fonction zeta et series d’Eisenstein’, J. Inst. Math. Jussieu 5(1) (2006), 53–79.CrossRefGoogle Scholar

Murty, R., ‘The Fibonacci zeta-function’, in: Automorphic Representations and
$L$
-functions, Tata Institute of Fundamental Research Conference Proceedings, 18 (eds. Prasad, D., Rajan, C. S., Sankaranarayanan, A. and Sengupta, J.) (Hindustan Book Agency, New Delhi, India, 2013).Google Scholar

Pisot, C., ‘Kriterium für die algebraischen Zahlen’, Math. Z. 48 (1942), 293–323.CrossRefGoogle Scholar
Tachiya, Y., ‘Irrationality of certain Lambert series’, Tokyo J. Math. 27(1) (2004), 75–85.CrossRefGoogle Scholar
Zudilin, W., ‘On the irrationality of generalized
$q$
-logarithm’, Res. Number Theory 2 (2016), Article no. 15.CrossRefGoogle Scholar
