Hostname: page-component-f554764f5-fnl2l Total loading time: 0 Render date: 2025-04-20T08:04:50.663Z Has data issue: false hasContentIssue false

Combining meta-learned models with process models of cognition

Published online by Cambridge University Press:  23 September 2024

Adam N. Sanborn*
Affiliation:
Department of Psychology, University of Warwick, Coventry, UK [email protected] [email protected] [email protected] https://go.warwick.ac.uk/adamsanborn
Haijiang Yan
Affiliation:
Department of Psychology, University of Warwick, Coventry, UK [email protected] [email protected] [email protected] https://go.warwick.ac.uk/adamsanborn
Christian Tsvetkov
Affiliation:
Department of Psychology, University of Warwick, Coventry, UK [email protected] [email protected] [email protected] https://go.warwick.ac.uk/adamsanborn
*
*Corresponding author.

Abstract

Meta-learned models of cognition make optimal predictions for the actual stimuli presented to participants, but investigating judgment biases by constraining neural networks will be unwieldy. We suggest combining them with cognitive process models, which are more intuitive and explain biases. Rational process models, those that can sequentially sample from the posterior distributions produced by meta-learned models, seem a natural fit.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bhatia, S. (2017). Associative judgment and vector space semantics. Psychological Review, 124(1), 120. http://dx.doi.org/10.1037/rev0000047CrossRefGoogle ScholarPubMed
Busemeyer, J. R., Pothos, E. M., Franco, R., & Trueblood, J. S. (2011). A quantum theoretical explanation for probability judgment errors. Psychological Review, 118(2), 193218. https://doi.org/10.1037/a0022542CrossRefGoogle ScholarPubMed
Castillo, L., León-Villagrá, P., Chater, N., & Sanborn, A. (2024). Explaining the flaws in human random generation as local sampling with momentum. PLoS Computational Biology, 20(1), e1011739. https://doi.org/10.1371/journal.pcbi.1011739CrossRefGoogle ScholarPubMed
Costello, F., & Watts, P. (2014). Surprisingly rational: Probability theory plus noise explains biases in judgment. Psychological Review, 121(3), 463480. https://doi.org/10.1037/a0037010CrossRefGoogle ScholarPubMed
Costello, F., & Watts, P. (2017). Explaining high conjunction fallacy rates: The probability theory plus noise account. Journal of Behavioral Decision Making, 30(2), 304321. https://dx.doi.org/10.1002/bdm.1936CrossRefGoogle Scholar
Dasgupta, I., Schulz, E., Tenenbaum, J. B., & Gershman, S. J. (2020). A theory of learning to infer. Psychological Review, 127(3), 412441. https://doi.org/10.1037/rev0000178CrossRefGoogle ScholarPubMed
Griffiths, T. L., Vul, E., & Sanborn, A. N. (2012). Bridging levels of analysis for probabilistic models of cognition. Current Directions in Psychological Science, 21(4), 263268. https://doi.org/10.1177/0963721412447619CrossRefGoogle Scholar
Juslin, P., Nilsson, H., & Winman, A. (2009). Probability theory, not the very guide of life. Psychological Review, 116(4), 856874. https://doi.org/10.1037/a0016979CrossRefGoogle Scholar
Nosofsky, R. M., Sanders, C. A., Meagher, B. J., & Douglas, B. J. (2018). Toward the development of a feature-space representation for a complex natural category domain. Behavior Research Methods, 50, 530556. https://doi.org/10.3758/s13428-017-0884-8CrossRefGoogle ScholarPubMed
Peterson, J. C., Bourgin, D. D., Agrawal, M., Reichman, D., & Griffiths, T. L. (2021). Using large-scale experiments and machine learning to discover theories of human decision-making. Science, 372(6547), 12091214. https://doi.org/10.1126/science.abe2629CrossRefGoogle ScholarPubMed
Spicer, J., Zhu, J. Q., Chater, N., & Sanborn, A. N. (2022). Perceptual and cognitive judgments show both anchoring and repulsion. Psychological Science, 33(9), 13951407. https://doi.org/10.1177/09567976221089599CrossRefGoogle ScholarPubMed
Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90(4), 293315. https://doi.org/10.1037/0033-295X.90.4.293CrossRefGoogle Scholar
Vul, E., Goodman, N., Griffiths, T. L., & Tenenbaum, J. B. (2014). One and done? Optimal decisions from very few samples. Cognitive Science, 38(4), 599637. https://doi.org/10.1111/cogs.12101CrossRefGoogle ScholarPubMed
Wedell, D. H., & Moro, R. (2008). Testing boundary conditions for the conjunction fallacy: Effects of response mode, conceptual focus, and problem type. Cognition, 107(1), 105136. https://doi.org/10.1016/j.cognition.2007.08.003CrossRefGoogle ScholarPubMed
Zhu, J. Q., León-Villagrá, P., Chater, N., & Sanborn, A. N. (2022). Understanding the structure of cognitive noise. PLoS Computational Biology, 18(8), e1010312. https://doi.org/10.1371/journal.pcbi.1010312CrossRefGoogle ScholarPubMed
Zhu, J.-Q., Sanborn, A. N., & Chater, N. (2020). The Bayesian sampler: Generic Bayesian inference causes incoherence in human probability judgments. Psychological Review, 127(5), 719748. https://doi.org/10.1037/rev0000190CrossRefGoogle ScholarPubMed
Zhu, J.-Q., Sundh, J., Spicer, J., Chater, N., & Sanborn, A. N. (2023). The autocorrelated Bayesian sampler: A rational process for probability judgments, estimates, confidence intervals, choices, confidence judgments, and response times. Psychological Review, 131(2), 456493. https://doi.org/10.1037/rev0000427CrossRefGoogle ScholarPubMed