Hostname: page-component-669899f699-g7b4s Total loading time: 0 Render date: 2025-04-26T07:26:13.793Z Has data issue: false hasContentIssue false

Sparse space–time resolvent analysis for statistically stationary and time-varying flows

Published online by Cambridge University Press:  21 November 2024

Barbara Lopez-Doriga*
Affiliation:
Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL 60616, USA
Eric Ballouz
Affiliation:
Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA
H. Jane Bae
Affiliation:
Graduate Aerospace Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
Scott T.M. Dawson
Affiliation:
Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL 60616, USA
*
Email address for correspondence: barbara.ldoriga@gmail.com

Abstract

Resolvent analysis provides a framework to predict coherent spatio-temporal structures of the largest linear energy amplification, through a singular value decomposition (SVD) of the resolvent operator, obtained by linearising the Navier–Stokes equations about a known turbulent mean velocity profile. Resolvent analysis utilizes a Fourier decomposition in time, which has thus far limited its application to statistically stationary or time-periodic flows. This work develops a variant of resolvent analysis applicable to time-evolving flows, and proposes a variant that identifies spatio-temporally sparse structures, applicable to either stationary or time-varying mean velocity profiles. Spatio-temporal resolvent analysis is formulated through the incorporation of the temporal dimension to the numerical domain via a discrete time-differentiation operator. Sparsity (which manifests in localisation) is achieved through the addition of an $l_1$-norm penalisation term to the optimisation associated with the SVD. This modified optimisation problem can be formulated as a nonlinear eigenproblem and solved via an inverse power method. We first showcase the implementation of the sparse analysis on a statistically stationary turbulent channel flow, and demonstrate that the sparse variant can identify aspects of the physics not directly evident from standard resolvent analysis. This is followed by applying the sparse space–time formulation on systems that are time varying: a time-periodic turbulent Stokes boundary layer and then a turbulent channel flow with a sudden imposition of a lateral pressure gradient, with the original streamwise pressure gradient unchanged. We present results demonstrating how the sparsity-promoting variant can either change the quantitative structure of the leading space–time modes to increase their sparsity, or identify entirely different linear amplification mechanisms compared with non-sparse resolvent analysis.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abreu, L.I., Cavalieri, A.V.G., Schlatter, P., Vinuesa, R. & Henningson, D.S. 2020 Spectral proper orthogonal decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows. J. Fluid Mech. 900, A11.CrossRefGoogle Scholar
Akhavan, R., Kamm, R.D. & Shapiro, A.H. 1991 An investigation of transition to turbulence in bounded oscillatory Stokes flows part 1. Experiments. J. Fluid Mech. 225, 395422.CrossRefGoogle Scholar
Arun, R., Bae, H.J. & McKeon, B.J. 2023 Towards real-time reconstruction of velocity fluctuations in turbulent channel flow. Phys. Rev. Fluids 8 (6), 064612.CrossRefGoogle Scholar
Bae, H.J., Dawson, S.T.M. & McKeon, B.J. 2020 a Resolvent-based study of compressibility effects on supersonic turbulent boundary layers. J. Fluid Mech. 883, A29.CrossRefGoogle Scholar
Bae, H.J., Dawson, S.T.M. & McKeon, B.J. 2020 b Studying the effect of wall cooling in supersonic boundary layer flow using resolvent analysis. AIAA SciTech 2020 Forum.CrossRefGoogle Scholar
Bae, H.J., Lozano-Duran, A., Bose, S.T. & Moin, P. 2018 Turbulence intensities in large-eddy simulation of wall-bounded flows. Phys. Rev. Fluids 3 (1), 014610.CrossRefGoogle ScholarPubMed
Bae, H.J., Lozano-Durán, A., Bose, S.T. & Moin, P. 2019 Dynamic slip wall model for large-eddy simulation. J. Fluid Mech. 859, 400432.CrossRefGoogle ScholarPubMed
Ballouz, E., Lopez-Doriga, B., Dawson, S.T.M. & Bae, H.J. 2023 Wavelet-based resolvent analysis of temporally-varying turbulent flows. AIAA SciTech 2023 Forum.CrossRefGoogle Scholar
Ballouz, E., Lopez-Doriga, B., Dawson, S.T.M. & Bae, H.J. 2024 Wavelet-based resolvent analysis of non-stationary flows. J. Fluid Mech. (submitted). arXiv:2404.06600.CrossRefGoogle Scholar
Barkley, D, Blackburn, H.M. & Sherwin, S.J. 2008 Direct optimal growth analysis for timesteppers. Intl J. Numer. Meth. Fluids 57 (9), 14351458.CrossRefGoogle Scholar
Beneddine, S., Yegavian, R., Sipp, D. & Leclaire, B. 2017 Unsteady flow dynamics reconstruction from mean flow and point sensors: an experimental study. J. Fluid Mech. 824, 174201.CrossRefGoogle Scholar
Blennerhassett, P.J. & Bassom, A.P. 2002 The linear stability of at Stokes layers. J. Fluid Mech. 464, 393410.CrossRefGoogle Scholar
Blennerhassett, P.J. & Bassom, A.P. 2006 The linear stability of high-frequency oscillatory flow in a channel. J. Fluid Mech. 556, 125.CrossRefGoogle Scholar
Blennerhassett, P.J. & Bassom, A.P. 2007 The linear stability of high-frequency flow in a torsionally oscillating cylinder. J. Fluid Mech. 576, 491505.CrossRefGoogle Scholar
Böberg, L. & Brösa, U. 1988 Onset of turbulence in a pipe. Z. Naturforsch. 43 (8–9), 697726.CrossRefGoogle Scholar
Brunton, S.L., Proctor, J.L. & Kutz, J.N. 2016 Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113 (15), 39323937.CrossRefGoogle ScholarPubMed
Bühler, T. 2014 A flexible framework for solving constrained ratio problems in machine learning. PhD thesis, Saarland University.Google Scholar
Butler, K.M. & Farrell, B.F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A: Fluid Dyn. 4 (8), 16371650.CrossRefGoogle Scholar
Candès, E.J. & Wakin, M.B. 2008 An introduction to compressive sampling. IEEE Signal Process. Mag. 25 (2), 2130.CrossRefGoogle Scholar
Chavarin, A. & Luhar, M. 2019 Resolvent analysis for turbulent channel flow with riblets. AIAA J. 58 (2), 589599.CrossRefGoogle Scholar
Costamagna, P., Vittori, G. & Blondeaux, P. 2003 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 474, 133.CrossRefGoogle Scholar
Dawson, S.T.M. & McKeon, B.J. 2019 On the shape of resolvent modes in wall-bounded turbulence. J. Fluid Mech. 877, 682716.CrossRefGoogle Scholar
Dawson, S.T.M. & McKeon, B.J. 2020 Prediction of resolvent mode shapes in supersonic turbulent boundary layers. Intl J. Heat Fluid Flow 85, 108677.CrossRefGoogle Scholar
Del Alamo, J.C. & Jimenez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.CrossRefGoogle Scholar
Dennis, D.J.C. & Nickels, T.B. 2011 Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180217.CrossRefGoogle Scholar
Edstrand, A.M., Schmid, P.J., Taira, K. & Cattafesta, L.N. 2018 A parallel stability analysis of a trailing vortex wake. J. Fluid Mech. 837, 858895.CrossRefGoogle Scholar
Farghadan, A., Martini, E. & Towne, A. 2023 Scalable resolvent analysis for three-dimensional flows. arXiv:2309.04617.Google Scholar
Foures, D.P.G., Caulfield, C.P. & Schmid, P.J. 2013 Localization of flow structures using $\infty$-norm optimization. J. Fluid Mech. 729, 672701.CrossRefGoogle Scholar
Frame, M.T. & Towne, A. 2022 Space-time POD and the Hankel matrix. PLoS One 17 (4), e0266793.Google Scholar
Gómez, F., Blackburn, H.M., Rudman, M., Sharma, A.S. & McKeon, B.J. 2016 A reduced-order model of three-dimensional unsteady flow in a cavity based on the resolvent operator. J. Fluid Mech. 798, R2.CrossRefGoogle Scholar
Head, M.R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.CrossRefGoogle Scholar
Heidt, L. & Colonius, T. 2024 Spectral proper orthogonal decomposition of harmonically forced turbulent flows. J. Fluid Mech. 985, A42.CrossRefGoogle Scholar
Hein, M. & Bühler, T. 2010 An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse PCA. In Advances in Neural Information Processing Systems, vol. 23. NIPS.Google Scholar
Hino, M., Sawamoto, M. & Takasu, S. 1976 Experiments on transition to turbulence in an oscillatory pipe flow. J. Fluid Mech. 75 (2), 193207.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 664, 5173.CrossRefGoogle Scholar
Illingworth, S.J., Monty, J.P. & Marusic, I. 2018 Estimating large-scale structures in wall turbulence using linear models. J. Fluid Mech. 842, 146162.CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Jolliffe, I.T., Trendafilov, N.T. & Uddin, M. 2003 A modified principal component technique based on the LASSO. J. Comput. Graph. Stat. 12 (3), 531547.CrossRefGoogle Scholar
Journée, M., Nesterov, Y., Richtárik, P. & Sepulchre, R. 2010 Generalized power method for sparse principal component analysis. J. Mach. Learn. Res. 11 (2), 517553.Google Scholar
Jovanović, M.R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.CrossRefGoogle Scholar
Jovanović, M.R., Schmid, P.J. & Nichols, J.W. 2014 Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26 (2), 024103.CrossRefGoogle Scholar
Kern, J.S., Beneitez, M., Hanifi, A. & Henningson, D.S. 2021 Transient linear stability of pulsating Poiseuille flow using optimally time-dependent modes. J. Fluid Mech. 927, A6.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59 (2), 308323.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Kim, K.C. & Adrian, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.CrossRefGoogle Scholar
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.CrossRefGoogle Scholar
Landahl, M.T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Maths 28 (4), 735756.CrossRefGoogle Scholar
Landahl, M.T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98 (2), 243251.CrossRefGoogle Scholar
Lesshafft, L., Semeraro, O., Jaunet, V., Cavalieri, A.V.G. & Jordan, P. 2019 Resolvent-based modeling of coherent wave packets in a turbulent jet. Phys. Rev. Fluids 4 (6), 063901.CrossRefGoogle Scholar
Lin, C.-T., Tsai, M.-L. & Tsai, H.-C. 2023 Flow control of a plunging cylinder based on resolvent analysis. J. Fluid Mech. 967, A41.CrossRefGoogle Scholar
Loiseau, J.-C. & Brunton, S.L. 2018 Constrained sparse Galerkin regression. J. Fluid Mech. 838, 4267.CrossRefGoogle Scholar
Lopez-Doriga, B., Ballouz, E., Bae, H.J. & Dawson, S.T.M. 2023 A sparsity-promoting resolvent analysis for the identification of spatiotemporally-localized amplification mechanisms. AIAA SciTech 2023 Forum.CrossRefGoogle Scholar
Lopez-Doriga, B., Dawson, S.T.M. & Vinuesa, R. 2022 Resolvent analysis of laminar and turbulent rectangular duct flows. AIAA Aviation 2022 Forum.CrossRefGoogle Scholar
Lozano-Durán, A. & Bae, H.J. 2019 Characteristic scales of Townsend's wall-attached eddies. J. Fluid Mech. 868, 698725.CrossRefGoogle ScholarPubMed
Lozano-Durán, A., Giometto, M.G., Park, G.I. & Moin, P. 2020 Non-equlibrium three-dimensional boundary layers at moderate Reynolds numbers. J. Fluid Mech. 883, A20.CrossRefGoogle Scholar
Luhar, M., Sharma, A.S. & McKeon, B.J. 2014 a On the structure and origin of pressure fluctuations in wall turbulence: predictions based on the resolvent analysis. J. Fluid Mech. 751, 3870.CrossRefGoogle Scholar
Luhar, M., Sharma, A.S. & McKeon, B.J. 2014 b Opposition control within the resolvent analysis framework. J. Fluid Mech. 749, 597626.CrossRefGoogle Scholar
Luhar, M., Sharma, A.S. & McKeon, B.J. 2015 A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415441.CrossRefGoogle Scholar
Madhusudanan, A. & Kerswell, R.R. 2024 Predicting burst events in a forced 2D flow: a wavelet-based analysis. arXiv:2403.05263.Google Scholar
Mao, X. & Sherwin, S.J. 2011 Continuous spectra of the Batchelor vortex. J. Fluid Mech. 681, 123.CrossRefGoogle Scholar
Martini, E., Cavalieri, A.V.G., Jordan, P., Towne, A. & Lesshafft, L. 2020 Resolvent-based optimal estimation of transitional and turbulent flows. J. Fluid Mech. 900, A2.CrossRefGoogle Scholar
McKeon, B.J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.CrossRefGoogle Scholar
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
McMullen, R.M, Rosenberg, K. & McKeon, B.J. 2020 Interaction of forced Orr–Sommerfeld and Squire modes in a low-order representation of turbulent channel flow. Phys. Rev. Fluids 5 (8), 084607.CrossRefGoogle Scholar
Meseguer, Á. & Trefethen, L.N. 2003 Linearized pipe flow to Reynolds number $10^7$. J. Comput. Phys. 186, 178197.CrossRefGoogle Scholar
Moarref, R., Sharma, A.S., Tropp, J.A. & McKeon, B.J. 2013 Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275316.CrossRefGoogle Scholar
Moin, P., Shih, T.-H., Driver, D.M. & Mansour, N.N. 1990 Direct numerical simulation of a three-dimensional turbulent boundary layer. Phys. Fluids 2, 18461853.CrossRefGoogle Scholar
Obrist, D. & Schmid, P.J. 2010 Algebraically decaying modes and wave packet pseudo-modes in swept Hiemenz flow. J. Fluid Mech. 643, 309332.CrossRefGoogle Scholar
Obrist, D. & Schmid, P.J. 2011 Algebraically diverging modes upstream of a swept bluff body. J. Fluid Mech. 683, 346356.CrossRefGoogle Scholar
Orlandi, P. 2000 Fluid Flow Phenomena: A Numerical Toolkit. Springer.CrossRefGoogle Scholar
Orr, W.M'F., 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: a viscous liquid. In Proc. R. Ir. Acad. A, pp. 69–138. JSTOR.Google Scholar
Padovan, A., Otto, S. & Rowley, C.W. 2020 Analysis of amplification mechanisms and cross-frequency interactions in nonlinear flows via the harmonic resolvent. J. Fluid Mech. 900, A14.CrossRefGoogle Scholar
Padovan, A. & Rowley, C.W. 2022 Analysis of the dynamics of subharmonic flow structures via the harmonic resolvent: application to vortex pairing in an axisymmetric jet. Phys. Rev. Fluids 7 (7), 073903.CrossRefGoogle Scholar
Pickering, E., Towne, A., Jordan, P. & Colonius, T. 2021 Resolvent-based modeling of turbulent jet noise. J. Acoust. Soc. Am. 150 (4), 24212433.CrossRefGoogle ScholarPubMed
Pier, B. & Schmid, P.J. 2017 Linear and nonlinear dynamics of pulsatile channel flow. J. Fluid Mech. 815, 435480.CrossRefGoogle Scholar
Reddy, S.C. & Henningson, D.S. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.CrossRefGoogle Scholar
Rosenberg, K. & McKeon, B.J. 2019 Efficient representation of exact coherent states of the Navier–Stokes equations using resolvent analysis. Fluid Dyn. Res. 51, 011401.CrossRefGoogle Scholar
Rubini, R., Lasagna, D. & Da Ronch, A. 2020 The $l_1$-based sparsification of energy interactions in unsteady lid-driven cavity flow. J. Fluid Mech. 905, A15.CrossRefGoogle Scholar
Schmid, P.J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129–62.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Schmidt, O.T. & Schmid, P.J. 2019 A conditional space–time POD formalism for intermittent and rare events: example of acoustic bursts in turbulent jets. J. Fluid Mech. 867, R2.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Sharma, A.S. & McKeon, B.J. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.CrossRefGoogle Scholar
Sharma, A.S., Moarref, R. & McKeon, B.J. 2017 Scaling and interaction of self-similar modes in models of high-Reynolds number wall turbulence. Phil. Trans. R. Soc. Lond. A 375 (2089), 20160089.Google ScholarPubMed
Sigg, C.D. & Buhmann, J.M. 2008 Expectation-maximization for sparse and non-negative PCA. In ICML 2008, pp. 960–967. Association for Computing Machinery.CrossRefGoogle Scholar
Sillero, J.A., Jimenez, J. & Moser, R.D. 2014 Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to $\delta ^+ \approx 2000$. Phys. Fluids 26, 105109.CrossRefGoogle Scholar
Skene, C.S., Yeh, C.-A., Schmid, P.J. & Taira, K. 2022 Sparsifying the resolvent forcing mode via gradient-based optimisation. J. Fluid Mech. 944, A52.CrossRefGoogle Scholar
Symon, S., Madhusudanan, A., Illingworth, S.J. & Marusic, I. 2023 Use of eddy viscosity in resolvent analysis of turbulent channel flow. Phys. Rev. Fluids 8 (6), 064601.CrossRefGoogle Scholar
Symon, S., Sipp, D., Schmid, P.J. & McKeon, B.J. 2020 Mean and unsteady flow reconstruction using data-assimilation and resolvent analysis. AIAA J. 58 (2), 575588.CrossRefGoogle Scholar
Theodorsen, T. 1952 Mechanisms of turbulence. In Proceedings of the 2nd Midwestern Conference of Fluid Mechanics, Ohio State University (ed. R.W. Powell, S.M. Marco & A.N. Tifford). Engineering Experiment Station, Ohio State University.Google Scholar
Tissot, G., Cavalieri, A.V.G. & Mémin, E. 2021 Stochastic linear modes in a turbulent channel flow. J. Fluid Mech. 912, A51.CrossRefGoogle Scholar
Toedtli, S.S., Luhar, M. & McKeon, B.J. 2019 Predicting the response of turbulent channel flow to varying-phase opposition control: resolvent analysis as a tool for flow control design. Phys. Rev. Fluids 4 (7), 073905.CrossRefGoogle Scholar
Towne, A., Lozano-Durán, A. & Yang, X.I.A. 2020 Resolvent-based estimation of space-time flow statistics. J. Fluid Mech. 883, A17.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Tu, J.H, Rowley, C.W., Kutz, J.N. & Shang, J.K. 2014 Spectral analysis of fluid flows using sub-Nyquist-rate PIV data. Exp. Fluids 55 (9), 113.CrossRefGoogle Scholar
Verzicco, R. & Vittori, G. 1996 Direct simulation of transition in Stokes boundary layers. Phys. Fluids 8 (6), 13411343.CrossRefGoogle Scholar
Vittori, G. & Verzicco, R. 1998 Direct simulation of transition in an oscillatory boundary layer. J. Fluid Mech. 371, 207232.CrossRefGoogle Scholar
Weideman, J.A. & Reddy, S.C. 2000 A Matlab differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.CrossRefGoogle Scholar
Wray, A.A. 1990 Minimal storage time advancement schemes for spectral methods. NASA Tech. Rep. MS 202.Google Scholar
Yeh, C.-A. & Taira, K. 2019 Resolvent-analysis-based design of airfoil separation control. J. Fluid Mech. 867, 572610.CrossRefGoogle Scholar
Zare, A., Jovanović, M.R. & Georgiou, T.T. 2017 Colour of turbulence. J. Fluid Mech. 812, 636680.CrossRefGoogle Scholar
Zou, H., Hastie, T. & Tibshirani, R. 2006 Sparse principal component analysis. J. Comput. Graph. Stat. 15 (2), 265286.CrossRefGoogle Scholar
Zou, H. & Xue, L. 2018 A selective overview of sparse principal component analysis. Proc. IEEE 106 (8), 13111320.CrossRefGoogle Scholar