1. Introduction
Let p be an odd prime. Research on determinants involving the Legendre symbol $(\frac {\cdot }{p})$ can be traced back to Lehmer [Reference Lehmer4], Carlitz [Reference Carlitz1] and Chapman [Reference Chapman2]. For example, Carlitz [Reference Carlitz1, Theorem 4] studied the determinant
and showed that
Chapman [Reference Chapman2] investigated some variants of $\det C(t)$ . For instance, Chapman considered
If we let $\varepsilon _p>1$ and $h_p$ be the fundamental unit and the class number of $\mathbb {Q}(\sqrt {p})$ , respectively, then Chapman [Reference Chapman2] proved that
where $a_p,b_p\in \mathbb {Q}$ are defined by the equality
In 2019, Sun [Reference Sun5] initiated the study of determinants involving the Legendre symbol and binary quadratic forms. For example, Sun considered the determinant
Sun [Reference Sun5, Theorem 1.2] showed that $-\det S_p$ is always a quadratic residue modulo p. See also [Reference Krachun, Petrov, Sun and Vsemirnov3, Reference Wu7] for recent work on this topic.
Recently, Sun [Reference Sun6] posed many interesting conjectures on determinants related to the Legendre symbol. We give one example.
Conjecture 1.1 (Sun; [Reference Sun6, Conjecture 1.1])
Let $p\equiv 3\pmod 4$ be a prime. Then,
Motivated by these results, we will study some determinants involving the quadratic multiplicative character of a finite field. We first introduce some notation.
Let $q=p^s$ be an odd prime power with p prime and $s\in \mathbb {Z}^+$ and let $\mathbb {F}_q$ be the finite field of q elements. Let $\mathbb {F}_q^{\times }$ be the cyclic group of all nonzero elements of $\mathbb {F}_q$ . For any positive integer k which divides $q-1$ , let
be the subgroup of all nonzero kth powers in $\mathbb {F}_q$ .
Let $\widehat {\mathbb {F}_q^{\times }}$ be the cyclic group of all multiplicative characters of $\mathbb {F}_q$ . Throughout this paper, for any $\psi \in \widehat {\mathbb {F}_q^{\times }}$ , we extend $\psi $ to $\mathbb {F}_q$ by setting $\psi (0)=0$ . Also, if $2\nmid q$ , we use the symbol $\phi $ to denote the unique quadratic multiplicative character of $\mathbb {F}_q$ , that is,
Inspired by the above results, we define the matrix $A_k(t)$ by
The integers $c_k$ and $d_k$ , which are related to the number of $\mathbb {F}_q$ -rational points of certain hyperelliptic curves over $\mathbb {F}_q$ , are defined by
and
Now we state the main results of this paper.
Theorem 1.2. Let $q=p^s$ be an odd prime power with p prime and $s\in \mathbb {Z}^+$ . Then, for any positive integer k which divides $q-1$ , the following results hold.
-
(i) Suppose $q\equiv 1\pmod {2k}$ . Then $\det A_k(t)=0$ . In particular, if $q\equiv 1\pmod 4$ , then $\det A_2(t)=0$ .
-
(ii) If $q\equiv 3\pmod 4$ , then
$$ \begin{align*}\det A_2(t)=\bigg(\frac{q-1}{2}t-1\bigg)q^{{(q-3)}/{4}}.\end{align*} $$ -
(iii) Suppose $q\equiv 1\pmod 4$ and $q\not \equiv 1\pmod {2k}$ . Then there is an integer $u_k$ such that
$$ \begin{align*}\det A_k(t)=\bigg(\frac{q-1}{k}t-\frac{1}{k}(c_k+d_k+2)\bigg)\cdot u_k^2.\end{align*} $$
Remark 1.3. (i) Theorem 1.2(i) generalises [Reference Sun6, Theorem 1.1] to an arbitrary finite field with odd characteristic. In the case where $q=p$ is an odd prime, Theorem 1.2(ii) confirms Conjecture 1.1 posed by Zhi-Wei Sun.
(ii) For any k with $3\le k<q-1$ , $k\mid q-1$ and $q-1\not \equiv 0\pmod {2k}$ , we can also obtain the explicit value of $\det A_k(t)$ . However, finding a simple expression for $\det A_k(t)$ seems very difficult.
We will prove our main results in Section 2.
2. Proof of Theorem 1.2
Throughout this section, we let $\chi $ be a generator of $\widehat {\mathbb {F}_q^{\times }}$ . Also, for any $\chi ^i,\chi ^j\in \widehat {\mathbb {F}_q^{\times }}$ , the Jacobi sum of $\chi ^i$ and $\chi ^j$ is defined by
We begin with a known result in linear algebra.
Lemma 2.1. Let n be a positive integer and let M be an $n\times n$ complex matrix. Let $\lambda _1,\ldots ,\lambda _n\in \mathbb {C}$ , and let $\mathbf{v}_1,\ldots ,\mathbf{v}_n\in \mathbb {C}^n$ be column vectors. Suppose that
for $1\le i\le n$ and that the vectors $\mathbf{v}_1,\ldots ,\mathbf{v}_n$ are linearly independent over $\mathbb {C}$ . Then $\lambda _1,\ldots ,\lambda _n$ are exactly all the eigenvalues of M (counting multiplicity).
Before the proof of our main results, we first introduce the definition of circulant matrices. Let R be a commutative ring and let $b_0,b_1,\ldots ,b_{n-1}\in R$ . Then the circulant matrix of the tuple $(b_0,b_1,\ldots ,b_{n-1})$ is defined by
where the indices are cyclic modulo n.
The second author [Reference Wu7, Lemma 3.4] proved the following result.
Lemma 2.2. Let $n\ge 1$ be an odd integer. Let R be a commutative ring and let $b_0,\ldots ,b_{n-1}\in R$ such that $b_i=b_{n-i}$ for $1\le i\le n-1$ . Then there is an element $u\in R$ such that
Now we are in a position to prove our main results. For simplicity, we set ${n=(q-1)/k}$ .
Proof of Theorem 1.2
(i) Suppose $q-1\equiv 0\pmod {2k}$ . Let $\xi _{2k}\in \mathbb {F}_q$ be a primitive $2k$ th root of unity. Then $-1=\xi _{2k}^k\in D_k$ . Thus, for any j with $1\le j\le n$ , there exists an integer $j'$ with $1\le j'\le n$ such that $a_{j'}=-a_j$ and $j\neq j'$ . This implies that the jth column of $A_k(t)$ is the same as the $j'$ th column of $A_k(t)$ and hence $\det A_k(t)=0$ .
(ii) Suppose now $q-1\not \equiv 0\pmod {2k}$ . Then, clearly k is even. For any integers $m,n$ with $0\le m\le n-1$ and $1\le i\le n$ ,
Let
By the above results,
Since
the vectors $\mathbf{v}_0,\ldots ,\mathbf{v}_{n-1}$ are linearly independent over $\mathbb {C}$ and hence by Lemma 2.1, the complex numbers $\lambda _0,\ldots ,\lambda _{n-1}$ are exactly all the eigenvalues of $A_k(0)$ .
Now let $k=2$ . Then clearly $q\equiv 3\pmod 4$ and n is odd in this case. We first evaluate $\det A_2(0)$ . By the above,
The last equality follows from $\overline {\lambda _m}=\lambda _{n-m}$ for $1\le m\le n-1$ . For $\lambda _0$ ,
The last equality follows from
For $\lambda _{2m}$ with $1\le m\le (n-1)/2$ , one can verify that
Combining (2.2) and (2.3) with (2.1),
Now we turn to $\det A_2(t)$ . By (2.2) for $1\le j\le n$ ,
This implies that $(nt-1)\mid \det A_2(t)$ . Noting that $\det A_2(t)\in \mathbb {Z}[t]$ with degree $\le 1$ ,
(iii) Suppose $q\equiv 1\pmod 4$ and $q\not \equiv 1\pmod {2k}$ . Clearly, $k\equiv 0\pmod 2$ in this case. Let $g\in \mathbb {F}_q$ be a generator of the cyclic group $\mathbb {F}_q^{\times }$ . Then one can verify that
For $0\le i\le n-1$ , let
Then one can easily verify that
and that $b_i=b_{n-i}$ for $1\le i\le n-1$ . Now applying Lemma 2.2, we see that there is an element $u_k\in \mathbb {Z}[t]$ such that
One can verify that
where $c_k$ and $d_k$ are defined by (1.1) and (1.2), and the last equality follows from
As $\det A_k(t)\in \mathbb {Z}[t]$ with degree $\le 1$ , by the above, we see that $u_k\in \mathbb {Z}$ . Hence,
In view of the above, we have completed the proof of Theorem 1.2.
Acknowledgement
The authors would like to thank the referee for helpful comments.