Article contents
On some nonlinear Schrödinger equations in ℝN
Published online by Cambridge University Press: 23 August 2022
Abstract
In this paper, we consider the following nonlinear Schrödinger equations with the critical Sobolev exponent and mixed nonlinearities:, $t>0$
, $\lambda >0$
and $2< q<2^{*}=\frac {2N}{N-2}$
. Based on our recent study on the normalized solutions of the above equation in [J. Wei and Y. Wu, Normalized solutions for Schrodinger equations with critical Sobolev exponent and mixed nonlinearities, e-print arXiv:2102.04030[Math.AP].], we prove that
(1) the above equation has two positive radial solutions for $N=3$
, $2< q<4$
and $t>0$
sufficiently large, which gives a rigorous proof of the numerical conjecture in [J. Dávila, M. del Pino and I. Guerra. Non-uniqueness of positive ground states of non-linear Schrödinger equations. Proc. Lond. Math. Soc. 106 (2013), 318–344.];
(2) there exists $t_q^{*}>0$
for $2< q\leq 4$
such that the above equation has ground-states for $t\geq t_q^{*}$
in the case of $2< q<4$
and for $t>t_4^{*}$
in the case of $q=4$
, while the above equation has no ground-states for $0< t< t_q^{*}$
for all $2< q\leq 4$
, which, together with the well-known results on ground-states of the above equation, almost completely solve the existence of ground-states, except for $N=3$
, $q=4$
and $t=t_4^{*}$
.
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline20.png)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline21.png)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline22.png)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline23.png)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_eqnU2.png)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline24.png)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline25.png)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline26.png)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline27.png)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline28.png)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline29.png)
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 153 , Issue 5 , October 2023 , pp. 1503 - 1528
- Copyright
- Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline770.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline771.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline772.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline773.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline774.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline775.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline776.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline777.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline778.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline779.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230907211753066-0994:S0308210522000567:S0308210522000567_inline780.png?pub-status=live)
- 6
- Cited by