Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T08:09:58.451Z Has data issue: false hasContentIssue false

Modeling stratospheric polar vortex variation and identifying vortex extremes using explainable machine learning – ADDENDUM

Published online by Cambridge University Press:  28 February 2023

Abstract

Type
Addendum
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Cambridge University Press & Assessment regrets the omission of four ORCID iDs in the above article. The authors ORCID iDs are listed below:

Tom Beucler: 0000-0002-5731-1040

Eniko Székely: 0000-0001-5710-9814

William T. Ball: 0000-0002-1005-3670

Daniela I.V. Domeisen: 0000-0002-1463-929X

References

Wu, Z, Beucler, T, Székely, E, Ball, W, and Domeisen, D (2022) Modeling stratospheric polar vortex variation and identifying vortex extremes using explainable machine learning. Environmental Data Science, 1, E17. doi:10.1017/eds.2022.19CrossRefGoogle Scholar